An Improved Bootstrap Test of Stochastic Dominance

We propose a new method of testing stochastic dominance that improves on existing tests based on the standard bootstrap or subsampling. The method admits prospects involving infinite as well as finite dimensional unknown parameters, so that the variables are allowed to be residuals from nonparametric and semiparametric models. The proposed bootstrap tests have asymptotic sizes that are less than or equal to the nominal level uniformly over probabilities in the null hypothesis under regularity conditions. This paper also characterizes the set of probabilities that the asymptotic size is exactly equal to the nominal level uniformly. As our simulation results show, these characteristics of our tests lead to an improved power property in general. The improvement stems from the design of the bootstrap test whose limiting behavior mimics the discontinuity of the original test's limiting distribution.

[1]  Frank Schorfheide,et al.  Estimation with overidentifying inequality moment conditions , 2009 .

[2]  D. Andrews,et al.  ASYMPTOTIC SIZE AND A PROBLEM WITH SUBSAMPLING AND WITH THE m OUT OF n BOOTSTRAP , 2009, Econometric Theory.

[3]  Federico A. Bugni Bootstrap Inference in Partially Identi…ed Models , 2009 .

[4]  D. Andrews,et al.  Inference for Parameters Defined by Moment Inequalities Using Generalized Moment Selection , 2007 .

[5]  V. Chernozhukov,et al.  Estimation and Confidence Regions for Parameter Sets in Econometric Models , 2007 .

[6]  Anna Mikusheva Uniform Inference in Autoregressive Models , 2007 .

[7]  Sang-Seob Park Con dence Sets for Some Partially Identi , 2007 .

[8]  Piotr Kokoszka,et al.  Testing for stochastic dominance using the weighted McFadden-type statistic , 2006 .

[9]  Frank Schorfheide,et al.  Boosting Your Instruments: Estimation with Overidentifying Inequality Moment Conditions , 2006 .

[10]  Jian Huang,et al.  ON THE BOOTSTRAP OF THE MAXIMUM SCORE ESTIMATOR , 2005 .

[11]  P. Hansen A Test for Superior Predictive Ability , 2005 .

[12]  O. Linton,et al.  Consistent Testing for Stochastic Dominance Under General Sampling Schemes , 2003 .

[13]  Peter Reinhard Hansen,et al.  Asymptotic Tests of Composite Hypotheses , 2003 .

[14]  Stephen G. Donald,et al.  Consistent Tests for Stochastic Dominance , 2003 .

[15]  Xiaohong Chen,et al.  Estimation of Semiparametric Models When the Criterion Function is Not Smooth , 2002 .

[16]  Yoon-Jae Whang,et al.  Consistent bootstrap tests of parametric regression functions , 2000 .

[17]  Petra E. Todd,et al.  Matching As An Econometric Evaluation Estimator , 1998 .

[18]  R. Davidson,et al.  Statistical Inference for Stochastic Dominance and for the Measurement of Poverty and Inequality , 1998 .

[19]  Gordon Anderson,et al.  Nonparametric Tests of Stochastic Dominance in Income Distributions , 1996 .

[20]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[21]  P. Hall,et al.  BOOTSTRAP CRITICAL VALUES FOR TESTS BASED ON , 1996 .

[22]  Joel L. Horowitz,et al.  Bootstrap Critical Values for Tests Based on Generalized-Method-of-Moments Estimators , 1996 .

[23]  Yihui Zhan,et al.  Bootstrapping Z? Estimators , 1996 .

[24]  R. Davidson,et al.  Statistical Inference for the Measurement of the Incidence of Taxes and Transfers , 1997 .

[25]  K. Do,et al.  Efficient and Adaptive Estimation for Semiparametric Models. , 1994 .

[26]  Harshinder Singh,et al.  Testing for Second-Order Stochastic Dominance of Two Distributions , 1994, Econometric Theory.

[27]  S. Lahiri,et al.  On bootstrapping M-estimated residual processes in multiple linear regression models , 1994 .

[28]  E. Mammen,et al.  Comparing Nonparametric Versus Parametric Regression Fits , 1993 .

[29]  Donald W. K. Andrews,et al.  Empirical Process Methods in Econometrics , 1993 .

[30]  P. Bickel Efficient and Adaptive Estimation for Semiparametric Models , 1993 .

[31]  A. Pewsey Exploring the Limits of Bootstrap , 1994 .

[32]  Jon A. Wellner,et al.  Uniform Donsker Classes of Functions , 1992 .

[33]  E. Giné,et al.  GAUSSIAN CHARACTERIZATION OF UNIFORM DONSKER CLASSES OF FUNCTIONS , 1991 .

[34]  E. Giné,et al.  Bootstrapping General Empirical Measures , 1990 .

[35]  James L. Powell,et al.  Semiparametric Estimation of Selection Models: Some Empirical Results , 1990 .

[36]  Thomas B. Fomby,et al.  Studies in the economics of uncertainty : in honor of Josef Hadar , 1989 .

[37]  D. McFadden Testing for Stochastic Dominance , 1989 .

[38]  M. Birman,et al.  PIECEWISE-POLYNOMIAL APPROXIMATIONS OF FUNCTIONS OF THE CLASSES $ W_{p}^{\alpha}$ , 1967 .