Open-shell singlet character of cyclacenes and short zigzag nanotubes.

The electronic ground states of [n]cyclacenes, as well as short-zigzag nanotubes, computed at unrestricted broken spin-symmetry density functional theory (UBS-DFT), were found to be open-shell singlets, rather than triplets. Computations for [6]cyclacene at complete active space self-consistent field (CASSCF) and multireference perturbation theory (MRMP2) levels support this conclusion. Along with strain, the radical character of the open-shell singlet with antiferromagnetically coupled electron spins may contribute to the difficulties in synthesizing [n]cyclacenes.

[1]  G. Lu,et al.  Stability of supershort single-walled carbon nanotubes. , 2005, The journal of physical chemistry. B.

[2]  D. Tománek,et al.  Electronic Structure of (n,0) Zigzag Carbon Nanotubes: Cluster and Crystal Approach , 1998 .

[3]  R. M. Cory,et al.  Transformations of a macrocyclic cyclophane belt into advanced [8]cyclacene and [8]cyclacene triquinone precursors , 1996 .

[4]  R. Ahlrichs,et al.  STABILITY ANALYSIS FOR SOLUTIONS OF THE CLOSED SHELL KOHN-SHAM EQUATION , 1996 .

[5]  Jun-Qian Li,et al.  The electronic structure and its theoretical simulation of carbon nanotube with finited length. Part I: the frontier orbitals and its properties of short armchair nanotubes , 2002 .

[6]  David J. Williams,et al.  Towards the Making of [12]Collarene , 1988 .

[7]  Kirk J. Ziegler,et al.  Controlled oxidative cutting of single-walled carbon nanotubes. , 2005, Journal of the American Chemical Society.

[8]  M. Mestechkin Finite length nanotubes: ground state degeneracy and single-electron spectrum. , 2005, The Journal of chemical physics.

[9]  Paul von Ragué Schleyer,et al.  From Dodecahedrapentaene to the “[n]Trannulenes”. A New In-Plane Aromatic Family , 1998 .

[10]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[11]  First principles study of magnetism in nanographenes. , 2007, The Journal of chemical physics.

[12]  J. Vittal,et al.  Macrocyclic cyclophane belts via double Diels-Alder cycloadditions: Macroannulation of bisdienes by bisdienophiles. Synthesis of a key precursor to an [8]cyclacene , 1996 .

[13]  Kim,et al.  Structures, Magnetic Properties, and Aromaticity of Cyclacenes. , 1999, Angewandte Chemie.

[14]  E. Nakamura,et al.  Theoretical studies on structures and aromaticity of finite-length armchair carbon nanotubes. , 2003, Organic letters.

[15]  E. Heilbronner Molecular Orbitals in homologen Reihen mehrkerniger aromatischer Kohlenwasserstoffe: I. Die Eigenwerte yon LCAO‐MO's in homologen Reihen , 1954 .

[16]  R. Herges,et al.  Synthesis of a chiral tube. , 2003, Angewandte Chemie.

[17]  Haruyuki Nakano,et al.  MCSCF reference quasidegenerate perturbation theory with Epstein—Nesbet partitioning , 1993 .

[18]  K. Kusakabe,et al.  Peculiar Localized State at Zigzag Graphite Edge , 1996 .

[19]  Y. Tobe,et al.  Molecular loops and belts. , 2006, Chemical reviews.

[20]  J. F. Stoddart,et al.  Molecular Belts and Collars in the Making: A Hexaepoxyoctacosahydro[12]cyclacene Derivative , 1987 .

[21]  K. Morokuma,et al.  Theoretical Study of Structure and Raman Spectra for Models of Carbon Nanotubes in Their Pristine and Oxidized Forms , 2002 .

[22]  Haruyuki Nakano,et al.  Quasidegenerate perturbation theory with multiconfigurational self‐consistent‐field reference functions , 1993 .

[23]  R. Smalley,et al.  Cutting Single-Wall Carbon Nanotubes through Fluorination , 2002 .

[24]  H. Bettinger Effects of finite carbon nanotube length on sidewall addition of fluorine atom and methylene. , 2004, Organic letters.

[25]  Rainer Herges,et al.  Topology in chemistry: designing Möbius molecules. , 2006, Chemical reviews.

[26]  K. Houk,et al.  Oligoacenes: theoretical prediction of open-shell singlet diradical ground states. , 2004, Journal of the American Chemical Society.

[27]  L. Türker Cryptoannulenic Behavior of Cyclacenes , 1994 .

[28]  Garnet Kin-Lic Chan,et al.  The radical character of the acenes: a density matrix renormalization group study. , 2007, The Journal of chemical physics.

[29]  J. Malrieu,et al.  On the spin gaps of conjugated hydrocarbon polymers. , 2007, The Journal of chemical physics.

[30]  C. Näther,et al.  Pyrolysis of a tubular aromatic compound. , 2003, Organic letters.

[31]  R. M. Cory,et al.  Fascinating stops on the way to cyclacenes and cyclacene quinones , 1998 .

[32]  H. Bettinger,et al.  Stable photoinduced charge separation in heptacene. , 2007, Chemical communications.

[33]  David J. Williams,et al.  Molecular LEGO. 1. Substrate-directed synthesis via stereoregular Diels-Alder oligomerizations , 1992 .

[34]  L. T. Scott,et al.  Conjugated belts and nanorings with radially oriented p orbitals. , 2003, Angewandte Chemie.

[35]  J. Siegel,et al.  Aromatic molecular-bowl hydrocarbons: synthetic derivatives, their structures, and physical properties. , 2006, Chemical reviews.

[36]  V. Enkelmann,et al.  Double‐Stranded Molecules: A [6] Beltene Derivative and the Corresponding Open‐Chain Polymer , 1989 .