Ensemble size: How suboptimal is less than infinity?

Ensemble forecasts are the method of choice in numerical weather prediction (NWP) to generate probabilistic forecasts. The number of members in an ensemble is an important factor in determining how well a probability distribution of a weather‐related variable can be estimated. Having only a finite number of members reduces the average skill such a probabilistic forecast can have. Increasing ensemble size is therefore desirable; however, ensemble size is also proportional to the computational cost. Having a small ensemble size limits the cost and makes other improvements, such as increases in spatial resolution, feasible.

[1]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[2]  C. Leith Theoretical Skill of Monte Carlo Forecasts , 1974 .

[3]  C. Cunnane Unbiased plotting positions — A review , 1978 .

[4]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[5]  J. Simonoff Multivariate Density Estimation , 1996 .

[6]  Roberto Buizza,et al.  Impact of Ensemble Size on Ensemble Prediction , 1998 .

[7]  Mats Hamrud,et al.  Impact of model resolution and ensemble size on the performance of an Ensemble Prediction System , 1998 .

[8]  Paola Sebastiani,et al.  Coherent dispersion criteria for optimal experimental design , 1999 .

[9]  M. Hoerling,et al.  Analysis of a Conceptual Model of Seasonal Climate Variability and Implications for Seasonal Prediction , 2000 .

[10]  David S. Richardson,et al.  Measures of skill and value of ensemble prediction systems, their interrelationship and the effect of ensemble size , 2001 .

[11]  Leonard A. Smith,et al.  Evaluating Probabilistic Forecasts Using Information Theory , 2002 .

[12]  Andrew P. Morse,et al.  DEVELOPMENT OF A EUROPEAN MULTIMODEL ENSEMBLE SYSTEM FOR SEASONAL-TO-INTERANNUAL PREDICTION (DEMETER) , 2004 .

[13]  Anton H. Westveld,et al.  Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation , 2005 .

[14]  Francisco J. Doblas-Reyes,et al.  A Debiased Ranked Probability Skill Score to Evaluate Probabilistic Ensemble Forecasts with Small Ensemble Sizes , 2005 .

[15]  A. Raftery,et al.  Strictly Proper Scoring Rules, Prediction, and Estimation , 2007 .

[16]  Richard Kleeman,et al.  Limits, Variability, and General Behavior of Statistical Predictability of the Midlatitude Atmosphere , 2008 .

[17]  David S. Richardson,et al.  On the effect of ensemble size on the discrete and continuous ranked probability scores , 2008 .

[18]  Lars Isaksen,et al.  Potential use of an ensemble of analyses in the ECMWF Ensemble Prediction System , 2008 .

[19]  Tim N. Palmer,et al.  Ensemble forecasting , 2008, J. Comput. Phys..

[20]  Roberto Buizza,et al.  Comparison of a 51-Member Low-Resolution (TL399L62) Ensemble with a 6-Member High-Resolution (TL799L91) Lagged-Forecast Ensemble , 2008 .

[21]  Renate Hagedorn,et al.  Communicating the value of probabilistic forecasts with weather roulette , 2009 .

[22]  T. Gneiting,et al.  Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules , 2011 .

[23]  Herbert A. David,et al.  Order Statistics , 2011, International Encyclopedia of Statistical Science.

[24]  D. S. Wilks,et al.  Chapter 8 - Forecast Verification , 2011 .

[25]  Panxing Wang,et al.  An effective configuration of ensemble size and horizontal resolution for the NCEP GEFS , 2012, Advances in Atmospheric Sciences.

[26]  David B. Stephenson,et al.  Three recommendations for evaluating climate predictions , 2013 .

[27]  Z. B. Bouallègue,et al.  Enhancing COSMO-DE ensemble forecasts by inexpensive techniques , 2013 .

[28]  T. Gneiting 719 Calibration of Medium-Range Weather Forecasts , 2014 .

[29]  Christopher A. T. Ferro,et al.  Fair scores for ensemble forecasts , 2014 .

[30]  Toshiyuki Imamura,et al.  The 10,240‐member ensemble Kalman filtering with an intermediate AGCM , 2014 .

[31]  F. Pappenberger,et al.  Trends in the predictive performance of raw ensemble weather forecasts , 2014 .

[32]  Alain Joly,et al.  PEARP, the Météo‐France short‐range ensemble prediction system , 2015 .

[33]  Francesco Ravazzolo,et al.  Forecaster's Dilemma: Extreme Events and Forecast Evaluation , 2015, 1512.09244.

[34]  Pierre Pinson,et al.  Quantile forecast discrimination ability and value , 2015 .

[35]  Willem A. Landman,et al.  Statistical Methods in the Atmospheric Sciences (3rd Edition), Daniel S. Wilks : book review , 2015 .

[36]  Arun Kumar,et al.  Inherent Predictability, Requirements on the Ensemble Size, and Complementarity , 2015 .

[37]  Leonard A. Smith,et al.  Demonstrating the value of larger ensembles in forecasting physical systems , 2016 .

[38]  Philippe Naveau,et al.  Estimation of the Continuous Ranked Probability Score with Limited Information and Applications to Ensemble Weather Forecasts , 2018, Mathematical Geosciences.

[39]  L. Raynaud,et al.  The impact of horizontal resolution and ensemble size for convective‐scale probabilistic forecasts , 2017 .

[40]  M. Tippett,et al.  The Weighted‐Average Lagged Ensemble , 2017, Journal of advances in modeling earth systems.

[41]  Simon T. K. Lang,et al.  Stochastic representations of model uncertainties at ECMWF: state of the art and future vision , 2017 .

[42]  Daniel S. Wilks,et al.  On assessing calibration of multivariate ensemble forecasts , 2017 .

[43]  D. Stephenson,et al.  The ensemble‐adjusted Ignorance Score for forecasts issued as normal distributions , 2019, Quarterly Journal of the Royal Meteorological Society.