Bobrovsky–Zakai-Type Bound for Periodic Stochastic Filtering

Mean-squared-error (MSE) lower bounds are commonly used for performance analysis and system design. Recursive algorithms have been derived for computation of Bayesian bounds in stochastic filtering problems. In this letter, we consider stochastic filtering with a mixture of periodic and nonperiodic states. For periodic states, the modulo- $T$ estimation error is of interest and the MSE lower bounds are inappropriate. Therefore, in this case, the mean-cyclic error and the MSE risks are used for estimation of the periodic and nonperiodic states, respectively. We derive a Bobrovsky-Zakai-type bound for mixed periodic and nonperiodic stochastic filtering. Then, we derive a recursive computation method for this bound in order to allow its computation in dynamic settings. The proposed recursively-computed mixed Bobrovsky–Zakai bound is useful for the design and performance analysis of filters in stochastic filtering problems with both periodic and nonperiodic states. This bound is evaluated for a target tracking example and is shown to be a valid and informative bound for particle filtering performance.

[1]  Carlos H. Muravchik,et al.  Posterior Cramer-Rao bounds for discrete-time nonlinear filtering , 1998, IEEE Trans. Signal Process..

[2]  Joseph Tabrikian,et al.  Bayesian Parameter Estimation Using Periodic Cost Functions , 2012, IEEE Transactions on Signal Processing.

[3]  Arye Nehorai,et al.  Comparative study of four adaptive frequency trackers , 1997, IEEE Trans. Signal Process..

[4]  Christoph F. Mecklenbräuker,et al.  Analytic Sequential Weiss–Weinstein Bounds , 2013, IEEE Transactions on Signal Processing.

[5]  Pramod K. Varshney,et al.  Conditional Posterior Cramér-Rao Lower Bounds for Nonlinear Sequential Bayesian Estimation , 2011, IEEE Trans. Signal Process..

[6]  Joseph Tabrikian,et al.  General Classes of Performance Lower Bounds for Parameter Estimation—Part II: Bayesian Bounds , 2010, IEEE Transactions on Information Theory.

[7]  Jun Zheng,et al.  Two Simplified Recursive Gauss–Newton Algorithms for Direct Amplitude and Phase Tracking of a Real Sinusoid , 2007, IEEE Signal Processing Letters.

[8]  Joseph Tabrikian,et al.  Cyclic Barankin-Type Bounds for Non-Bayesian Periodic Parameter Estimation , 2014, IEEE Transactions on Signal Processing.

[9]  Alan S. Willsky,et al.  Fourier series and estimation on the circle with applications to synchronous communication-I: Analysis , 1974, IEEE Trans. Inf. Theory.

[10]  Niclas Bergman,et al.  Recursive Bayesian Estimation : Navigation and Tracking Applications , 1999 .

[11]  R. Gill,et al.  Applications of the van Trees inequality : a Bayesian Cramr-Rao bound , 1995 .

[12]  Kanti V. Mardia,et al.  Statistics of Directional Data , 1972 .

[13]  P. Tichavsky,et al.  Posterior Cramer-Rao bound for adaptive harmonic retrieval , 1995, IEEE Trans. Signal Process..

[14]  William Fitzgerald,et al.  A Bayesian approach to tracking multiple targets using sensor arrays and particle filters , 2002, IEEE Trans. Signal Process..

[15]  Joseph Tabrikian,et al.  A General Class of Outage Error Probability Lower Bounds in Bayesian Parameter Estimation , 2012, IEEE Transactions on Signal Processing.

[16]  Yoram Bresler,et al.  A global lower bound on parameter estimation error with periodic distortion functions , 2000, IEEE Trans. Inf. Theory.

[17]  Petr Tichavský,et al.  Filtering, predictive, and smoothing Cramér-Rao bounds for discrete-time nonlinear dynamic systems , 2001, Autom..

[18]  Philippe Forster,et al.  A Fresh Look at the Bayesian Bounds of the Weiss-Weinstein Family , 2008, IEEE Transactions on Signal Processing.

[19]  Ivan Markovic,et al.  Von Mises Mixture PHD Filter , 2015, IEEE Signal Processing Letters.

[20]  L. Kronsjö Algorithms: Their Complexity and Efficiency , 1979 .

[21]  Fabrice Labeau,et al.  Approximate MMSE Estimator for Linear Dynamic Systems With Gaussian Mixture Noise , 2014, IEEE Transactions on Automatic Control.

[22]  Hwei P Hsu,et al.  Schaum's outline of theory and problems of probability, random variables, and random processes , 1997 .

[23]  Fredrik Gustafsson,et al.  The Marginal Enumeration Bayesian Cramér–Rao Bound for Jump Markov Systems , 2014, IEEE Signal Processing Letters.

[24]  Hagit Messer,et al.  A Barankin-type lower bound on the estimation error of a hybrid parameter vector , 1997, IEEE Trans. Inf. Theory.

[25]  Y. Bar-Shalom,et al.  Angle estimation for two unresolved targets with monopulse radar , 2004, IEEE Transactions on Aerospace and Electronic Systems.

[26]  Yonina C. Eldar,et al.  A Lower Bound on the Bayesian MSE Based on the Optimal Bias Function , 2008, IEEE Transactions on Information Theory.

[27]  Yaakov Oshman,et al.  Weiss–Weinstein Lower Bounds for Markovian Systems. Part 1: Theory , 2007, IEEE Transactions on Signal Processing.

[28]  Yossef Steinberg,et al.  Extended Ziv-Zakai lower bound for vector parameter estimation , 1997, IEEE Trans. Inf. Theory.

[29]  Joseph Tabrikian,et al.  A New Class of Bayesian Cyclic Bounds for Periodic Parameter Estimation , 2016, IEEE Transactions on Signal Processing.

[30]  H.L. Van Trees,et al.  Combined Cramer-Rao/Weiss-Weinstein Bound for Tracking Target Bearing , 2006, Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006..

[31]  Fredrik Gustafsson,et al.  Bayesian bhattacharyya bound for discrete-time filtering revisited , 2017, 2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[32]  Lennart Svensson,et al.  On the Bayesian Cramér-Rao Bound for Markovian Switching Systems , 2010, IEEE Transactions on Signal Processing.

[33]  S. Reece,et al.  Tighter alternatives to the Cramer-Rao lower bound for discrete-time filtering , 2005, 2005 7th International Conference on Information Fusion.

[34]  H. V. Trees,et al.  Some Lower Bounds on Signal Parameter Estimation , 2007 .

[35]  J. Tabrikian,et al.  MMSE-Based Filtering in Presence of Non-Gaussian System and Measurement Noise , 2010, IEEE Transactions on Aerospace and Electronic Systems.

[36]  Joseph Tabrikian,et al.  Cyclic Bayesian Cramér-Rao bound for filtering in circular state space , 2015, 2015 18th International Conference on Information Fusion (Fusion).

[37]  Fredrik Gustafsson,et al.  Marginal Weiss-Weinstein bounds for discrete-time filtering , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[38]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[39]  Eric Chaumette,et al.  A Class of Weiss–Weinstein Bounds and Its Relationship With the Bobrovsky–Mayer-Wolf–Zakaï Bounds , 2017, IEEE Transactions on Information Theory.

[40]  I. Bilik,et al.  Maneuvering Target Tracking in the Presence of Glint using the Nonlinear Gaussian Mixture Kalman Filter , 2010, IEEE Transactions on Aerospace and Electronic Systems.

[41]  Fredrik Gustafsson,et al.  The Marginal Bayesian Cramér–Rao Bound for Jump Markov Systems , 2016, IEEE Signal Processing Letters.

[42]  Joseph Tabrikian,et al.  Multivariate Bayesian Cramér-Rao-Type Bound for Stochastic Filtering Involving Periodic States , 2018, 2018 21st International Conference on Information Fusion (FUSION).

[43]  José M. F. Moura,et al.  Acquisition in phase demodulation: application to ranging in radar/sonar systems , 1995 .

[44]  Joseph Tabrikian,et al.  Non-Bayesian Periodic Cramér-Rao Bound , 2013, IEEE Transactions on Signal Processing.

[45]  Kristine L. Bell,et al.  A General Class of Lower Bounds in Parameter Estimation , 2007 .

[46]  Kristine L. Bell,et al.  Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking , 2007 .

[47]  Pramod K. Varshney,et al.  Conditional Posterior Cramér–Rao Lower Bounds for Nonlinear Sequential Bayesian Estimation , 2012, IEEE Transactions on Signal Processing.