A universal characterization of noncommutative motives and secondary algebraic K-theory

We provide a universal characterization of the construction taking a scheme X to its stable ∞-category Mot(X) of noncommutative motives, patterned after the universal characterization of algebraic K-theory due to Blumberg–Gepner–Tabuada. As a consequence, we obtain a corepresentability theorem for secondary K-theory. We envision this as a fundamental tool for the construction of trace maps from secondary K-theory. Towards these main goals, we introduce a preliminary formalism of “stable (∞, 2)-categories”; notable examples of these include (quasicoherent or constructible) sheaves of stable∞-categories. We also develop the rudiments of a theory of presentable enriched ∞-categories – and in particular, a theory of presentable (∞, n)-categories – which may be of intependent interest.

[1]  P. Safronov,et al.  The categorified Grothendieck–Riemann–Roch theorem , 2018, Compositio Mathematica.

[2]  Ib Madsen,et al.  On the K-theory of finite algebras over witt vectors of perfect fields , 1997 .

[3]  M. Kapranov,et al.  Higher Segal Spaces , 2012, Lecture Notes in Mathematics.

[4]  Denis-Charles Cisinski,et al.  Non-connective K-theory via universal invariants , 2009, Compositio Mathematica.

[5]  John R. Klein,et al.  The fiber of the linearization map A(∗) → K(Z) , 1997 .

[6]  Aaron Mazel-Gee Quillen adjunctions induce adjunctions of quasicategories , 2015, 1501.03146.

[7]  C. Barwick On the algebraic K‐theory of higher categories , 2012, 1204.3607.

[8]  C. Rezk,et al.  A cartesian presentation of weak n–categories , 2009, 0901.3602.

[9]  Bjørn Ian Dundas,et al.  The Local Structure of Algebraic K-Theory , 2012 .

[10]  Marc Hoyois,et al.  Higher traces, noncommutative motives, and the categorified Chern character , 2015, 1511.03589.

[11]  M. Hill,et al.  On the algebraic K-theory of truncated polynomial algebras in several variables , 2012, 1206.0247.

[12]  Gonçalo Tabuada Higher K-theory via universal invariants , 2007, 0706.2420.

[13]  John Rognes,et al.  Algebraic K-theory of topological K-theory , 2002 .

[14]  Jonathan A. Campbell The $K$-theory spectrum of varieties , 2015, Transactions of the American Mathematical Society.

[15]  E. Elmanto,et al.  On Nilpotent Extensions of ∞-Categories and the Cyclotomic Trace , 2021, International Mathematics Research Notices.

[16]  Michael A. Mandell,et al.  The homotopy groups of the algebraic K–theory of the sphere spectrum , 2014, Geometry & Topology.

[17]  B. Toën The homotopy theory of dg-categories and derived Morita theory , 2004, math/0408337.

[18]  Bruce Bartlett,et al.  The Geometry of Unitary 2-Representations of Finite Groups and their 2-Characters , 2008, Appl. Categorical Struct..

[19]  E. Zaslow,et al.  Constructible sheaves and the Fukaya category , 2006, math/0604379.

[20]  J. Rognes,et al.  Rational algebraic K-theory of topological K-theory , 2007, 0708.2160.

[21]  E. Riehl,et al.  BIMODULES AND NATURAL TRANSFORMATIONS FOR ENRICHED ∞-CATEGORIES , 2016 .

[22]  Ib Madsen,et al.  On the K-theory of local fields , 1999, math/9910186.

[23]  Friedhelm Waldhausen,et al.  ALGEBRAIC K-THEORY OF SPACES I , 1978 .

[24]  Aaron Mazel-Gee,et al.  The geometry of the cyclotomic trace , 2017, 1710.06409.

[25]  I. Madsen,et al.  On the de Rham–Witt complex in mixed characteristic , 2004 .

[26]  D. Nadler,et al.  Integral Transforms and Drinfeld Centers in Derived Algebraic Geometry , 2008, 0805.0157.

[27]  G. Vezzosi,et al.  Chern Character, Loop Spaces and Derived Algebraic Geometry , 2008, 0804.1274.

[28]  V. Hinich Yoneda lemma for enriched ∞-categories , 2020, Advances in Mathematics.

[29]  Aaron D. Lauda,et al.  An introduction to diagrammatic algebra and categorified quantum sl(2) , 2011, 1106.2128.

[30]  L. Hesselholt,et al.  On the K‐theory of truncated polynomial algebras over the integers , 2008, 0809.3544.

[31]  I. Madsen,et al.  Cyclic polytopes and the $K$-theory of truncated polynomial algebras , 1997 .

[32]  Representation and character theory in 2-categories , 2006, math/0602510.

[33]  Aaron Mazel-Gee,et al.  A naive approach to genuine $G$-spectra and cyclotomic spectra , 2017, 1710.06416.

[34]  M. Robalo K-theory and the bridge from motives to noncommutative motives , 2015 .

[35]  Gonçalo Tabuada A note on secondary K-theory , 2015, 1506.00916.

[36]  A. Blumberg,et al.  A universal characterization of higher algebraic K-theory , 2010, 1001.2282.

[37]  David Ayala,et al.  Factorization homology I: Higher categories , 2015, Advances in Mathematics.

[38]  B. Dundas,et al.  Covering Homology , 2007, 0706.0626.

[39]  N. Bottman 2–associahedra , 2017, Algebraic & Geometric Topology.

[40]  Christopher L. Douglas,et al.  Higher topological cyclic homology and the Segal conjecture for tori , 2008, 0803.2745.

[41]  The Grothendieck ring of varieties is not a domain , 2002, math/0204306.

[42]  Gonçalo Tabuada A note on secondary K-theory II , 2015, 1607.03094.

[43]  M. Larsen,et al.  Grothendieck ring of pretriangulated categories , 2004, math/0401009.