Sensor for Distance Measurement Using Pixel Grey-Level Information

An alternative method for distance measurement is presented, based on a radiometric approach to the image formation process. The proposed methodology uses images from an infrared emitting diode (IRED) to estimate the distance between the camera and the IRED. Camera output grey-level intensities are a function of the accumulated image irradiance, which is also related by inverse distance square law to the distance between the camera and the IRED. Analyzing camera-IRED distance, magnitudes that affected image grey-level intensities, and therefore accumulated image irradiance, were integrated into a differential model which was calibrated and used for distance estimation over a 200 to 600 cm range. In a preliminary model, the camera and the emitter were aligned.

[1]  Gilad Adiv,et al.  Determining Three-Dimensional Motion and Structure from Optical Flow Generated by Several Moving Objects , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Shree K. Nayar,et al.  Modeling the space of camera response functions , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Hironobu Fujiyoshi,et al.  Fast 3D position measurement with two unsynchronized cameras , 2003, Proceedings 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation. Computational Intelligence in Robotics and Automation for the New Millennium (Cat. No.03EX694).

[4]  Shree K. Nayar,et al.  Determining the Camera Response from Images: What Is Knowable? , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  H. Opower Multiple view geometry in computer vision , 2002 .

[6]  B. Ivanova,et al.  Validation of reducing-difference procedure for the interpretation of non-polarized infrared spectra of n-component solid mixtures. , 2006, Talanta.

[7]  Giulio Sandini,et al.  3D object reconstruction using stereo and motion , 1989, IEEE Trans. Syst. Man Cybern..

[8]  Carlos Andres Luna Vazquez Medida de la posición 3d de los cables de contacto que alimentan a los trenes de tracción eléctrica mediante visión , 2006 .

[9]  Andrew Zisserman,et al.  Multiple View Geometry , 1999 .

[10]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[11]  Erik Reinhard,et al.  High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting , 2010 .

[12]  Tayfun Aytac,et al.  Position-invariant surface recognition and localization using infrared sensors , 2003 .

[13]  José Luis Lázaro Galilea Modelado de entornos mediante infrarrojos: Aplicación al guiado de robots móviles , 1998 .

[14]  Shree K. Nayar,et al.  Radiometric self calibration , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[15]  Yoshiaki Shirai,et al.  Three-Dimensional Computer Vision , 1987, Symbolic Computation.

[16]  José Luis Lázaro,et al.  Mobile Robot with Wide Capture Active Laser Sensor and Environment Definition , 2001, J. Intell. Robotic Syst..

[17]  José-Enrique Simó-Ten,et al.  Using infrared sensors for distance measurement in mobile robots , 2002, Robotics Auton. Syst..

[18]  Minoru Ito Robot vision modelling-camera modelling and camera calibration , 1990, Adv. Robotics.

[19]  Nicola J. Ferrier,et al.  Using infrared sensors and the Phong illumination model to measure distances , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[20]  Alfredo Gardel Vicente,et al.  Guidance of Autonomous Vehicles by Means of Structured Light , 1998 .

[21]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[22]  Andrew Zisserman,et al.  Multiple View Geometry in Computer Vision (2nd ed) , 2003 .

[23]  Pedro R. Fernández,et al.  A Preliminary Model for a Distance Sensor, Using a Radiometric Point of View , 2009 .

[24]  Janne Heikkilä,et al.  Geometric Camera Calibration Using Circular Control Points , 2000, IEEE Trans. Pattern Anal. Mach. Intell..