and Soft Tissue Anterior Cruciate Ligament Reconstruction on the Tibial Side Biomechanical Comparison of Interference Screws and Combination Screw and Sheath Devices for

http://ajs.sagepub.com/content/41/4/841 The online version of this article can be found at: DOI: 10.1177/0363546512474968 2013 41: 841 originally published online February 12, 2013 Am J Sports Med Coen A. Wijdicks Cathrine Aga, Matthew T. Rasmussen, Sean D. Smith, Kyle S. Jansson, Robert F. LaPrade, Lars Engebretsen and Soft Tissue Anterior Cruciate Ligament Reconstruction on the Tibial Side Biomechanical Comparison of Interference Screws and Combination Screw and Sheath Devices for

[1]  M. Prado,et al.  Close-looped graft suturing improves mechanical properties of interference screw fixation in ACL reconstruction , 2013, Knee Surgery, Sports Traumatology, Arthroscopy.

[2]  K. Gall,et al.  Anterior cruciate ligament fixation: is radial force a predictor of the pullout strength of soft-tissue interference devices? , 2012, The Knee.

[3]  A. Amis,et al.  The fixation strength of a novel ACL soft-tissue graft fixation device compared with conventional interference screws: a biomechanical study in vitro , 2011, Knee Surgery, Sports Traumatology, Arthroscopy.

[4]  K. An,et al.  A biomechanical comparison of the Delta screw and RetroScrew tibial fixation on initial intra-articular graft tension , 2011, Knee Surgery, Sports Traumatology, Arthroscopy.

[5]  A. Herrera,et al.  Fixation strength of biocomposite wedge interference screw in ACL reconstruction: effect of screw length and tunnel/screw ratio. A controlled laboratory study , 2010, BMC musculoskeletal disorders.

[6]  R. LaPrade,et al.  A Comparison between a Retrograde Interference Screw, Suture Button, and Combined Fixation on the Tibial Side in an All-Inside Anterior Cruciate Ligament Reconstruction , 2009, The American journal of sports medicine.

[7]  J. Nyland,et al.  Soft Tissue Tendon Graft Fixation in Serially Dilated or Extraction-Drilled Tibial Tunnels , 2007, The American journal of sports medicine.

[8]  E. L. Cain,et al.  Effect of tibial tunnel dilation on pullout strength of semitendinosus-gracilis graft in anterior cruciate ligament reconstruction. , 2005, Orthopedics.

[9]  J. Nyland,et al.  A Biomechanical Comparison of Initial Soft Tissue Tibial Fixation Devices , 2004, The American journal of sports medicine.

[10]  M. Järvinen,et al.  Porcine Tibia is a Poor Substitute for Human Cadaver Tibia for Evaluating Interference Screw Fixation , 2004, The American journal of sports medicine.

[11]  M. Hull,et al.  Foam-Reinforced Elderly Human Tibia Approximates Young Human Tibia Better than Porcine Tibia , 2004, The American journal of sports medicine.

[12]  Mika Vihavainen,et al.  The Fixation Strength of Six Hamstring Tendon Graft Fixation Devices in Anterior Cruciate Ligament Reconstruction: Part I: Femoral Site * , 2003, The American journal of sports medicine.

[13]  D. Caborn,et al.  Correlation of bone tunnel diameter with quadrupled hamstring graft fixation strength using a biodegradable interference screw. , 2002, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[14]  A. Weiler,et al.  Biomechanical comparison of hamstring and patellar tendon graft anterior cruciate ligament reconstruction techniques: The impact of fixation level and fixation method under cyclic loading. , 2002, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[15]  M. Conditt,et al.  Interactive effects of tunnel dilation on the mechanical properties of hamstring grafts fixed in the tibia with interference screws , 2001, Knee Surgery, Sports Traumatology, Arthroscopy.

[16]  D. Caborn,et al.  Effect of Screw Length on Bioabsorbable Interference Screw Fixation in a Tibial Bone Tunnel * , 2001, The American journal of sports medicine.

[17]  Freddie H. Fu,et al.  Anterior and posterior cruciate ligament reconstruction in the new millennium: a global perspective , 2001, Knee Surgery, Sports Traumatology, Arthroscopy.

[18]  P Kannus,et al.  Initial Fixation Strength of Bioabsorbable and Titanium Interference Screws in Anterior Cruciate Ligament Reconstruction , 2001, The American journal of sports medicine.

[19]  M. Hull,et al.  Comparison of viscoelastic, structural, and material properties of double-looped anterior cruciate ligament grafts made from bovine digital extensor and human hamstring tendons. , 2001, Journal of biomechanical engineering.

[20]  P. Chambat,et al.  Graft fixation in cruciate ligament reconstruction. , 2001, The American journal of sports medicine.

[21]  J. Fulkerson,et al.  Mechanical Evaluation of a Soft Tissue Interference Screw in Free Tendon Anterior Cruciate Ligament Graft Fixation , 2001, The American journal of sports medicine.

[22]  D. Caborn,et al.  Technical note: alternative soft-tissue graft preparation technique for cruciate ligament reconstruction. , 2000, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[23]  A. Weiler,et al.  The Influence of Screw Geometry on Hamstring Tendon Interference Fit Fixation , 2000, The American journal of sports medicine.

[24]  W. Grana,et al.  Natural History of a Hamstring Tendon Autograft Used for Anterior Cruciate Ligament Reconstruction in a Sheep Model , 2000, The American journal of sports medicine.

[25]  H. Kohl,et al.  Cyclic Pull-Out Strength of Hamstring Tendon Graft Fixation with Soft Tissue Interference Screws , 1999, The American journal of sports medicine.

[26]  M. Hull,et al.  Structural Properties of Six Tibial Fixation Methods for Anterior Cruciate Ligament Soft Tissue Grafts , 1999, The American journal of sports medicine.

[27]  D. Kohn,et al.  Cortical versus cancellous interference fixation for bone-patellar tendon-bone grafts. , 1998, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[28]  T. Wickiewicz,et al.  Pretibial cyst formation after anterior cruciate ligament surgery with soft tissue autografts. , 1998, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[29]  A. Weiler,et al.  Biodegradable Interference Screw Fixation Exhibits Pull-Out Force and Stiffness Similar to Titanium Screws , 1998, The American journal of sports medicine.

[30]  K. Markolf,et al.  Direct measurement of resultant forces in the anterior cruciate ligament. An in vitro study performed with a new experimental technique. , 1990, The Journal of bone and joint surgery. American volume.

[31]  J. Andrish,et al.  A biomechanical comparison of different surgical techniques of graft fixation in anterior cruciate ligament reconstruction , 1987, The American journal of sports medicine.

[32]  Jacob Cohen Statistical Power Analysis for the Behavioral Sciences , 1969, The SAGE Encyclopedia of Research Design.

[33]  S. Werner,et al.  Early versus late start of open kinetic chain quadriceps exercises after ACL reconstruction with patellar tendon or hamstring grafts: a prospective randomized outcome study , 2006, Knee Surgery, Sports Traumatology, Arthroscopy.

[34]  K. Shino,et al.  Comparison of eccentric and concentric screw placement for hamstring graft fixation in the tibial tunnel , 2000, Knee Surgery, Sports Traumatology, Arthroscopy.

[35]  J. Nemzek,et al.  The effect of bone compaction on early fixation of porous-coated implants. , 1999, The Journal of arthroplasty.