Application of excel solver for parameter estimation of the nonlinear Muskingum models

The Muskingum model continues to be a popular procedure for river flood routing. An important aspect in nonlinear Muskingum models is the calibration of the model parameters. The current study presents the application of commonly available spreadsheet software, Microsoft Excel 2010, for the purpose of estimating the parameters of nonlinear Muskingum routing models. Main advantage of this approach is that it can calibrate the parameters using two different ways without knowing the exact details of optimization techniques. These procedures consist of (1) Generalized Reduced Gradient (GRG) solver and (2) evolutionary solver. The first one needs the initial values assumption for the parameter estimation while the latter requires the determination of the algorithm parameters. The results of the simulation of an example that is a benchmark problem for parameter estimation of the nonlinear Muskingum models indicate that Excel solver is a promising way to reduce problems of the parameter estimation of the nonlinear Muskingum routing models. Furthermore, the results indicate that the efficiency of Excel solver for the parameter estimation of the models can be increased, if both GRG and evolutionary solvers are used together.

[1]  Z. Geem,et al.  PARAMETER ESTIMATION OF THE NONLINEAR MUSKINGUM MODEL USING HARMONY SEARCH 1 , 2001 .

[2]  R. McCuen,et al.  Evaluation of the Nash-Sutcliffe Efficiency Index , 2006 .

[3]  Y. Tung River flood routing by nonlinear muskingum method , 1985 .

[4]  Ismail I. Esen,et al.  Approximate Methods for the Estimation of Muskingum Flood Routing Parameters , 2006 .

[5]  Amlan Das,et al.  Chance-Constrained Optimization-Based Parameter Estimation for Muskingum Models , 2007 .

[6]  Reza Barati Discussion of “Parameter Estimation for Nonlinear Muskingum Model Based on Immune Clonal Selection Algorithm” by Jungang Luo and Jiancang Xie , 2011 .

[7]  Garry L. Grabow,et al.  Planning for Water Allocation and Water Quality Using a Spreadsheet-Based Model , 2007 .

[8]  Hafzullah Aksoy,et al.  Modeling Monthly Mean Flow in a Poorly Gauged Basin by Fuzzy Logic , 2009 .

[9]  Leon S. Lasdon,et al.  Design and Testing of a Generalized Reduced Gradient Code for Nonlinear Programming , 1978, TOMS.

[10]  Jiancang Xie,et al.  Parameter Estimation for Nonlinear Muskingum Model Based on Immune Clonal Selection Algorithm , 2010 .

[11]  Amlan Das,et al.  Parameter Estimation for Muskingum Models , 2004 .

[12]  Reza Barati,et al.  Developing a model for analysis of uncertainties in prediction of floods , 2012 .

[13]  Jaewan Yoon,et al.  Parameter Estimation of Linear and Nonlinear Muskingum Models , 1993 .

[14]  Stuart Smith,et al.  Solving Large Sparse Nonlinear Programs Using GRG , 1992, INFORMS J. Comput..

[15]  M. A. Gill Flood routing by the Muskingum method , 1978 .

[16]  Jong-Seok Lee Uncertainties in the predicted number of life loss due to the dam breach floods , 2003 .

[17]  Wei Chen,et al.  Water Distribution Network Analysis Using Excel , 2004 .

[18]  Rakesh Kumar Shrivastava,et al.  Flood Routing in River Networks Using Equivalent Muskingum Inflow , 2002 .

[19]  S. Mohan,et al.  Parameter Estimation of Nonlinear Muskingum Models Using Genetic Algorithm , 1997 .

[20]  D. Papamichail,et al.  Parameter Estimation Of Linear AndNonlinear Muskingum Models ForRiver Flood Routing , 1970 .

[21]  Tommy S. W. Wong,et al.  Determination of Critical and Normal Depths Using Excel , 2004 .

[22]  Jong-Seok Lee,et al.  The impacts of uncertainty in the predicted dam breach floods on economic damage estimation , 2003 .

[23]  Liang-Cheng Chang,et al.  Applying Particle Swarm Optimization to Parameter Estimation of the Nonlinear Muskingum Model , 2009 .

[24]  Z. Fuat Toprak,et al.  Flow Discharge Modeling in Open Canals Using a New Fuzzy Modeling Technique (SMRGT) , 2009 .

[25]  Reza Barati,et al.  Comprehensive analysis of flooding in unmanaged catchments , 2012 .

[26]  Parthasarathi Choudhury,et al.  Multiple Inflows Muskingum Routing Model , 2007 .

[27]  Drainage Division,et al.  Criteria for Evaluation of Watershed Models , 1993 .

[28]  Z. Fuat Toprak,et al.  Longitudinal Dispersion Coefficient Modeling in Natural Channels using Fuzzy Logic , 2007 .

[29]  Hikmet Kerem Cigizoglu,et al.  Predicting longitudinal dispersion coefficient in natural streams by artificial intelligence methods , 2008 .

[30]  Michael A. Saunders,et al.  Large-scale linearly constrained optimization , 1978, Math. Program..

[31]  Duke Ophori,et al.  Groundwater resources management in the Afram Plains area, Ghana , 2008 .

[32]  Z. Geem Parameter Estimation for the Nonlinear Muskingum Model Using the BFGS Technique , 2006 .

[33]  Hone-Jay Chu,et al.  The Muskingum flood routing model using a neuro-fuzzy approach , 2009 .

[34]  Rajib Kumar Bhattacharjya Solving Groundwater Flow Inverse Problem Using Spreadsheet Solver , 2011 .

[35]  V. T. Chow Open-channel hydraulics , 1959 .