S-Benzimidazolyl glycosides as a platform for oligosaccharide synthesis by an active-latent strategy.

The involvement of complex carbohydrates in a wide variety of disease-related cellular processes has given this class of natural compounds tremendous diagnostic and therapeutic potential.[1] While scientists have been able to successfully isolate certain classes of natural carbohydrates, the availability of pure natural isolates is still inadequate to address the challenges offered by modern glycosciences. As a consequence, chemical glycosylation has become a viable means to obtain both natural complex carbohydrates and nonnatural analogues thereof.[2–4] Unfortunately, chemical synthesis of oligosaccharides of even moderate complexity still remains a considerable challenge, and many more complex structures are not available at all. As such, the development of efficient strategies for oligosaccharide and glycoconjugate synthesis stands out as a demanding area of research.[5]

[1]  A. Demchenko,et al.  Glycosyl alkoxythioimidates as complementary building blocks for chemical glycosylation. , 2010, Organic letters.

[2]  P. Fügedi,et al.  (2-Nitrophenyl)acetyl: a new, selectively removable hydroxyl protecting group. , 2010, Organic letters.

[3]  A. Demchenko,et al.  Superarming common glycosyl donors by simple 2-O-benzoyl-3,4,6-tri-O-benzyl protection. , 2010, The Journal of organic chemistry.

[4]  S. Hotha,et al.  Orthogonal activation of propargyl and n-pentenyl glycosides and 1,2-orthoesters. , 2009, The Journal of organic chemistry.

[5]  J. Balbach,et al.  Coordination chemistry approach to the long-standing challenge of stereocontrolled chemical glycosylation. , 2009, Chemical communications.

[6]  Thomas J Boltje,et al.  Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research. , 2009, Nature chemistry.

[7]  K. Stine,et al.  STICS: surface-tethered iterative carbohydrate synthesis. , 2009, Chemical communications.

[8]  R. R. Schmidt,et al.  Neue Prinzipien für die Bildung von glycosidischen Bindungen , 2009 .

[9]  R. Schmidt,et al.  New principles for glycoside-bond formation. , 2009, Angewandte Chemie.

[10]  A. Demchenko,et al.  Unexpected orthogonality of S-benzoxazolyl and S-thiazolinyl glycosides: application to expeditious oligosaccharide assembly. , 2009, Organic letters.

[11]  James T. Smoot,et al.  Oligosaccharide synthesis: from conventional methods to modern expeditious strategies. , 2009, Advances in carbohydrate chemistry and biochemistry.

[12]  A. Demchenko,et al.  How the arming participating moieties can broaden the scope of chemoselective oligosaccharide synthesis by allowing the inverse armed-disarmed approach. , 2008, The Journal of organic chemistry.

[13]  A. Demchenko,et al.  4-(pyridin-2-yl)thiazol-2-yl thioglycosides as bidentate ligands for oligosaccharide synthesis via temporary deactivation. , 2008, Chemical communications.

[14]  A. Demchenko,et al.  Superarming the S-benzoxazolyl glycosyl donors by simple 2-O-benzoyl-3,4,6-tri-O-benzyl protection. , 2008, Organic letters.

[15]  A. Demchenko,et al.  Application of the superarmed glycosyl donor to chemoselective oligosaccharide synthesis. , 2008, Organic letters.

[16]  G. Boons,et al.  Glycoside Synthesis from 1-Sulfur/Selenium-Substituted Derivatives: Thioglycosides in Oligosaccharide Synthesis , 2008 .

[17]  S. Hashimoto,et al.  Glycoside Synthesis from 1‐Oxygen Substituted Glycosyl Donors: Sections 3.3 and 3.4 , 2008 .

[18]  G. Boons,et al.  Glycoside Synthesis from 1-Sulfur/Selenium-Substituted Derivatives: Sulfoxides, Sulfimides and Sulfones , 2008 .

[19]  A. Demchenko General Aspects of the Glycosidic Bond Formation , 2008 .

[20]  K. Stine,et al.  Application of glycosyl thioimidates in solid-phase oligosaccharide synthesis. , 2008, The Journal of organic chemistry.

[21]  A. Abou,et al.  2‐Benzylsulfanyl‐1H‐benzimidazole , 2007 .

[22]  M. Kamat,et al.  Versatile synthesis and mechanism of activation of S-benzoxazolyl glycosides. , 2007, The Journal of organic chemistry.

[23]  Li-he Zhang,et al.  Oligosaccharide assembly by one-pot multi-step strategy. , 2007, Organic & biomolecular chemistry.

[24]  Pengfei Wang,et al.  Simple glycosylation reaction of allyl glycosides. , 2007, The Journal of organic chemistry.

[25]  D. Crich,et al.  Stereocontrolled glycoside and glycosyl ester synthesis. neighboring group participation and hydrogenolysis of 3-(2'-benzyloxyphenyl)-3,3-dimethylpropanoates. , 2007, Organic letters.

[26]  A. Demchenko,et al.  Recent trends in the synthesis of O-glycosides of 2-amino-2-deoxysugars. , 2007, Carbohydrate research.

[27]  M. Kamat,et al.  Chemoselective synthesis of oligosaccharides of 2-deoxy-2-aminosugars. , 2007, The Journal of organic chemistry.

[28]  A. Demchenko,et al.  S-thiazolinyl (STaz) glycosides as versatile building blocks for convergent selective, chemoselective, and orthogonal oligosaccharide synthesis. , 2006, Chemistry.

[29]  A. Demchenko,et al.  Development of an arming participating group for stereoselective glycosylation and chemoselective oligosaccharide synthesis. , 2005, Angewandte Chemie.

[30]  R. Kumar,et al.  Facile synthesis and antimicrobial properties of 2‐(substituted‐benzylsulfanyl)‐1h‐benzimidazoles , 2005 .

[31]  A. Demchenko,et al.  Synthesis, Glycosidation, and Hydrolytic Stability of Novel Glycosyl Thioimidates , 2005 .

[32]  M. Kamat,et al.  Revisiting the armed-disarmed concept rationale: s-benzoxazolyl glycosides in chemoselective oligosaccharide synthesis. , 2005, Organic letters.

[33]  A. Demchenko,et al.  Glycosyl thioimidates in a highly convergent one-pot strategy for oligosaccharide synthesis , 2005 .

[34]  V. Ferrières,et al.  General one-step synthesis of free hexofuranosyl 1-phosphates using unprotected 1-thioimidoyl hexofuranosides. , 2005, The Journal of organic chemistry.

[35]  U. Gangadharmath,et al.  A novel strategy for oligosaccharide synthesis via temporarily deactivated S-thiazolyl glycosides as glycosyl acceptors. , 2004, Organic letters.

[36]  Xuefei Huang,et al.  One-pot oligosaccharide synthesis: reactivity tuning by post-synthetic modification of aglycon. , 2004, Chemical communications.

[37]  A. Demchenko,et al.  Potent, versatile, and stable: thiazolyl thioglycosides as glycosyl donors. , 2004, Angewandte Chemie.

[38]  A. Demchenko,et al.  S-Benzoxazolyl (SBox) glycosides as novel, versatile glycosyl donors for stereoselective 1,2-cis glycosylation. , 2003, Organic letters.

[39]  V. Ferrières,et al.  A novel synthesis of D-galactofuranosyl, D-glucofuranosyl and D-mannofuranosyl 1-phosphates based on remote activation of new and free hexofuranosyl donors. , 2002, Bioorganic & medicinal chemistry letters.

[40]  Jinghua Xu,et al.  (2-Azidomethyl)phenylacetyl as a new, reductively cleavable protecting group for hydroxyl groups in carbohydrate synthesis. , 2002, Carbohydrate research.

[41]  Y. J. Lee,et al.  2-(Hydroxycarbonyl)benzyl glycosides: a novel type of glycosyl donors for highly efficient beta-mannopyranosylation and oligosaccharide synthesis by latent-active glycosylation. , 2001, Journal of the American Chemical Society.

[42]  L. Kiessling,et al.  Glycosyl sulfonylcarbamates: new glycosyl donors with tunable reactivity. , 2001, Journal of the American Chemical Society.

[43]  J. Robyt General Occurrence of Carbohydrates , 2001 .

[44]  P. Seeberger,et al.  Solid-phase oligosaccharide synthesis and combinatorial carbohydrate libraries. , 2000, Chemical reviews.

[45]  Carolyn R. Bertozzi,et al.  Essentials of Glycobiology , 1999 .

[46]  Yukishige Ito,et al.  Orthogonal Glycosylation Strategy in Oligosaccharide Synthesis , 1994 .

[47]  G. Boons,et al.  Vinyl glycosides in oligosaccharide synthesis (part 1): A new latent-active glycosylation strategy , 1994 .

[48]  A. Varki,et al.  Biological roles of oligosaccharides: all of the theories are correct , 1993, Glycobiology.

[49]  R. Roy,et al.  “Active” and “latent” thioglycosyl donors in oligosaccharide synthesis. Application to the synthesis of α-sialosides , 1992 .

[50]  R. Madsen,et al.  n-Pentenyl Glycosides in Organic Chemistry: A Contemporary Example of Serendipity , 1992 .

[51]  H. Mereyala,et al.  Stereoselective synthesis of α-linked saccharides by use of per O-benzylated 2-pyridyl 1-thio hexopyranosides as glycosyl donors and methyl iodide as an activator , 1991 .

[52]  H. Ottosson,et al.  Armed/disarmed effects in glycosyl donors: rationalization and sidetracking , 1990 .

[53]  C. Kaiser,et al.  Some benzyl-substituted imidazoles, triazoles, tetrazoles, pyridinethiones, and structural relatives as multisubstrate inhibitors of dopamine beta-hydroxylase. 4. Structure-activity relationships at the copper binding site. , 1990, Journal of medicinal chemistry.

[54]  K. Briner,et al.  Glycosylidene Carbenes a new approach to glycoside synthesis. Part 1. Preparation of glycosylidene-derived diaziridines and diazirines† , 1989 .

[55]  K. Kim,et al.  A facile one pot synthesis of 1-alkylbenzimidazoline-2-thiones , 1989 .

[56]  M. Nashed,et al.  Synthesis of 1,2-cis-linked glycosides using dimethyl(methylthio)sulfonium triflate as promoter and thioglycosides as glycosyl donors , 1986 .

[57]  S. Hanessian,et al.  Chemistry of the glycosidic linkage. Exceptionally fast and efficient formation of glycosides by remote activation , 1980 .