Inspiratory flow pattern in humans.

The theoretical estimation of the mechanical work of breathing during inspiration at rest is based on the common assumption that the inspiratory airflow wave is a sine function of time. Different analytical studies have pointed out that from an energetic point of view a rectangular wave is more economical than a sine wave. Visual inspection of inspiratory flow waves recorded during exercise in humans and various animals suggests that a trend toward a rectangular flow wave may be a possible systematic response of the respiratory system. To test this hypothesis, the harmonic content of inspiratory flow waves that were recorded in six healthy subjects at rest, during exercise hyperventilation, and during a maximum voluntary ventilation (MVV) maneuver were evaluated by a Fourier analysis, and the results were compared with those obtained on sinusoidal and rectangular models. The dynamic work inherent in the experimental waves and in the sine-wave model was practically the same at rest; during exercise hyperventilation and MVV, the experimental wave was approximately 16-20% more economical than the sinusoidal one. It was concluded that even though at rest the sinusoidal model is a reasonably good approximation of inspiratory flow, during exercise and MVV, a physiological controller is probably operating in humans that can select a more economical inspiratory pattern. Other peculiarities of airflow wave during hyperventilation and some optimization criteria are also discussed.