Optimization of Ni-amine coordination for improving NH3 permeation through nickel-doped bis[3-(trimethoxysilyl)propyl] amine membranes

[1]  U. Anggarini,et al.  Enhanced NH3 permeation of bis[3-(trimethoxysilyl)propyl] amine membranes via coordination with metals , 2023, Journal of Membrane Science.

[2]  G. He,et al.  Ester-Crosslinked Polymers of Intrinsic Microporosity Membranes with Enhanced Plasticization Resistance for Co2 Separation , 2023, SSRN Electronic Journal.

[3]  Chunfeng Song,et al.  Tailored interfacial microenvironment of mixed matrix membranes based on deep eutectic solvents for efficient CO2 separation , 2023, Separation and Purification Technology.

[4]  Lilong Jiang,et al.  A Mini-Review on NH3 Separation Technologies: Recent Advances and Future Directions , 2022, Energy & Fuels.

[5]  U. Anggarini,et al.  Structural Transformation of the Nickel Coordination-Induced Subnanoporosity of Aminosilica Membranes for Methanol-Selective, High-Flux Pervaporation , 2022, SSRN Electronic Journal.

[6]  X. Dang,et al.  Adsorption mechanism study of multinuclear metal coordination cluster Zn5 for anionic dyes congo red and methyl orange: experiment and molecular simulation , 2022, Applied Surface Science.

[7]  D. Deng,et al.  Highly efficient absorption and separation of NH3 by simple lithium deep eutectic solvents , 2021, Separation and Purification Technology.

[8]  R. K. Parsapur,et al.  Limitations of Ammonia as a Hydrogen Energy Carrier for the Transportation Sector , 2021, ACS Energy Letters.

[9]  Tian C. Zhang,et al.  Synthesis of CuSiO3-Loaded P-doped Porous Biochar Derived from Phytic Acid-Activated Lemon Peel for Enhanced Adsorption of NH3 , 2021, Separation and Purification Technology.

[10]  A. Eliseev,et al.  Facilitated transport of ammonia in ultra-thin Prussian Blue membranes with potential-tuned selectivity , 2021 .

[11]  Chongqi Chen,et al.  A Cationic Polymerization Strategy to Design Sulfonated Micro–Mesoporous Polymers as Efficient Adsorbents for Ammonia Capture and Separation , 2021, Macromolecules.

[12]  Xiangping Zhang,et al.  Exploring NH3 Transport Properties by Tailoring Ionic Liquids in Pebax-Based Hybrid Membranes , 2021, Industrial & Engineering Chemistry Research.

[13]  Xiangping Zhang,et al.  Super selective ammonia separation through multiple-site interaction with ionic liquid-based hybrid membranes , 2021, Journal of Membrane Science.

[14]  J. Hupp,et al.  Zirconium Metal-Organic Frameworks Integrating Chloride Ions for Ammonia Capture and/or Chemical Separation. , 2021, ACS applied materials & interfaces.

[15]  U. Anggarini,et al.  Microporous Nickel-Coordinated Aminosilica Membranes for Improved Pervaporation Performance of Methanol/Toluene Separation. , 2021, ACS applied materials & interfaces.

[16]  C. Wolden,et al.  Ammonia separation from N2 and H2 over LTA zeolitic imidazolate framework membranes , 2021 .

[17]  C. Wolden,et al.  Design and operational considerations of catalytic membrane reactors for ammonia synthesis , 2021 .

[18]  O. Konovalov,et al.  MXene-based gas separation membranes with sorption type selectivity , 2021 .

[19]  U. Anggarini,et al.  Metal-induced microporous aminosilica creates a highly permeable gas-separation membrane , 2021, Materials Chemistry Frontiers.

[20]  Hiroki Nagasawa,et al.  Hydrocarbon permeation properties through microporous fluorine-doped organosilica membranes with controlled pore sizes , 2021 .

[21]  Donghun Kim,et al.  High-performance ammonia-selective MFI nanosheet membranes. , 2020, Chemical communications.

[22]  Xiangping Zhang,et al.  NH3 separation membranes with self-assembled gas highways induced by protic ionic liquids , 2020 .

[23]  P. Nekså,et al.  Large-scale production and transport of hydrogen from Norway to Europe and Japan: Value chain analysis and comparison of liquid hydrogen and ammonia as energy carriers , 2020 .

[24]  Xiangping Zhang,et al.  Ionic liquid–based green processes for ammonia separation and recovery , 2020 .

[25]  Masakoto Kanezashi,et al.  Amino-decorated organosilica membranes for highly permeable CO2 capture , 2020 .

[26]  Paul J. Dauenhauer,et al.  Optimizing Ammonia Separation via Reactive Absorption for Sustainable Ammonia Synthesis , 2020 .

[27]  Masakoto Kanezashi,et al.  Tailoring Ultramicroporosity To Maximize CO2 Transport within Pyrimidine-Bridged Organosilica Membranes. , 2019, ACS applied materials & interfaces.

[28]  Izzat Iqbal Cheema,et al.  Operating envelope of Haber–Bosch process design for power-to-ammonia , 2018, RSC advances.

[29]  Masakoto Kanezashi,et al.  Preparation of Hybrid Organosilica Reverse Osmosis Membranes by Interfacial Polymerization of Bis[(trialkoxysilyl)propyl]amine , 2018, Chemistry Letters.

[30]  D. Gregory,et al.  Ni(NH3)2(NO3)2—A 3-D Network through Bridging Nitrate Units Isolated from the Thermal Decomposition of Nickel Hexammine Dinitrate , 2018, Inorganics.

[31]  J. Piquemal,et al.  The Independent Gradient Model: A New Approach for Probing Strong and Weak Interactions in Molecules from Wave Function Calculations. , 2018, Chemphyschem : a European journal of chemical physics and physical chemistry.

[32]  Ki‐Hyun Kim,et al.  Metal–organic frameworks (MOFs): potential and challenges for capture and abatement of ammonia , 2017 .

[33]  T. Tsuru,et al.  Hydrogen production from energy carriers by silica-based catalytic membrane reactors , 2016 .

[34]  V. Basiuk,et al.  Coordination functionalization of graphene oxide with tetraazamacrocyclic complexes of nickel(II): Generation of paramagnetic centers , 2016 .

[35]  Tian Lu,et al.  Multiwfn: A multifunctional wavefunction analyzer , 2012, J. Comput. Chem..

[36]  Masakoto Kanezashi,et al.  Characteristics of ammonia permeation through porous silica membranes , 2009 .

[37]  E. Birgin,et al.  PACKMOL: A package for building initial configurations for molecular dynamics simulations , 2009, J. Comput. Chem..

[38]  Enrico Drioli,et al.  Membrane Gas Separation: A Review/State of the Art , 2009 .

[39]  Kasper P. Jensen,et al.  Bioinorganic chemistry modeled with the TPSSh density functional. , 2008, Inorganic chemistry.

[40]  T. Tsuru Nano/subnano-tuning of porous ceramic membranes for molecular separation , 2008 .

[41]  J. Dalmon,et al.  Ceramic membranes for ammonia recovery , 2006 .

[42]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[43]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[44]  K. Aika,et al.  Modification of active carbon and zeolite as ammonia separation materials for a new de-NOx process with ammonia on-site synthesis , 2002 .

[45]  P. Hobza,et al.  Study of the nature of improper blue-shifting hydrogen bonding and standard hydrogen bonding in the X3CH...OH2 and XH...OH2 complexes (X = F, Cl, Br, I): A correlated Ab initio study. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[46]  A. Bhown,et al.  Mechanism for selective ammonia transport through poly(vinylammonium thiocyanate) membranes , 1991 .

[47]  D. Cocker,et al.  Secondary organic aerosol formation from primary aliphatic amines with NO 3 radical , 2008 .