Surface-kinetics mediated mesoporous multipods for enhanced bacterial adhesion and inhibition

[1]  Mei X. Wu,et al.  Physical activation of innate immunity by spiky particles , 2018, Nature Nanotechnology.

[2]  J. Ren,et al.  Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors , 2018, Nature Communications.

[3]  D. Zhao,et al.  Spatial Isolation of Carbon and Silica in a Single Janus Mesoporous Nanoparticle with Tunable Amphiphilicity. , 2018, Journal of the American Chemical Society.

[4]  M. Chi,et al.  Island Growth in the Seed-Mediated Overgrowth of Monometallic Colloidal Nanostructures , 2017 .

[5]  Xiaodong Chen,et al.  Nature-Inspired Structural Materials for Flexible Electronic Devices. , 2017, Chemical reviews.

[6]  D. Zhao,et al.  Facile Synthesis of Uniform Virus-like Mesoporous Silica Nanoparticles for Enhanced Cellular Internalization , 2017, ACS central science.

[7]  D. Zhao,et al.  Dumbbell-Shaped Bi-component Mesoporous Janus Solid Nanoparticles for Biphasic Interface Catalysis. , 2017, Angewandte Chemie.

[8]  Xiaolian Sun,et al.  Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. , 2017, Chemical Society reviews.

[9]  D. Zhao,et al.  Degradation‐Restructuring Induced Anisotropic Epitaxial Growth for Fabrication of Asymmetric Diblock and Triblock Mesoporous Nanocomposites , 2017, Advanced materials.

[10]  H. Stahlberg,et al.  Structure of the T4 baseplate and its function in triggering sheath contraction , 2016, Nature.

[11]  Hua Zhang,et al.  Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates. , 2016, Nature chemistry.

[12]  Chengzhong Yu,et al.  Small-sized and large-pore dendritic mesoporous silica nanoparticles enhance antimicrobial enzyme delivery. , 2016, Journal of materials chemistry. B.

[13]  Ming‐Yong Han,et al.  Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications. , 2016, Accounts of chemical research.

[14]  Mauro Ferrari,et al.  Principles of nanoparticle design for overcoming biological barriers to drug delivery , 2015, Nature Biotechnology.

[15]  Xian Jun Loh,et al.  Anisotropically branched metal nanostructures. , 2015, Chemical Society reviews.

[16]  Jiale Huang,et al.  Bio-inspired synthesis of metal nanomaterials and applications. , 2015, Chemical Society reviews.

[17]  D. Zhao,et al.  Anisotropic encapsulation-induced synthesis of asymmetric single-hole mesoporous nanocages. , 2015, Journal of the American Chemical Society.

[18]  N. Kotov,et al.  Anomalous dispersions of ‘hedgehog’ particles , 2015, Nature.

[19]  D. Zhao,et al.  Anisotropic growth-induced synthesis of dual-compartment Janus mesoporous silica nanoparticles for bimodal triggered drugs delivery. , 2014, Journal of the American Chemical Society.

[20]  Alexander Tropsha,et al.  Chemical basis of interactions between engineered nanoparticles and biological systems. , 2014, Chemical reviews.

[21]  Rafiq Ahmad,et al.  Tailored lysozyme-ZnO nanoparticle conjugates as nanoantibiotics. , 2014, Chemical communications.

[22]  Hyun-Wook Lee,et al.  A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. , 2014, Nature nanotechnology.

[23]  Weina Zhang,et al.  Designable Yolk–Shell Nanoparticle@MOF Petalous Heterostructures , 2014 .

[24]  D. Zhao,et al.  A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres , 2013, Nature Communications.

[25]  Xianglong Hu,et al.  Polyprodrug amphiphiles: hierarchical assemblies for shape-regulated cellular internalization, trafficking, and drug delivery. , 2013, Journal of the American Chemical Society.

[26]  J. Zou,et al.  Nanoparticles Mimicking Viral Surface Topography for Enhanced Cellular Delivery , 2013, Advanced materials.

[27]  K. Lewis Platforms for antibiotic discovery , 2013, Nature Reviews Drug Discovery.

[28]  S. Gruner,et al.  Multicompartment Mesoporous Silica Nanoparticles with Branched Shapes: An Epitaxial Growth Mechanism , 2013, Science.

[29]  Alison S. Waller,et al.  Genomic variation landscape of the human gut microbiome , 2012, Nature.

[30]  Christina Graf,et al.  Multivalency as a chemical organization and action principle. , 2012, Angewandte Chemie.

[31]  Wei Li,et al.  A versatile kinetics-controlled coating method to construct uniform porous TiO2 shells for multifunctional core-shell structures. , 2012, Journal of the American Chemical Society.

[32]  G. Battaglia,et al.  Endocytosis at the nanoscale. , 2012, Chemical Society reviews.

[33]  Hongyu Chen,et al.  Revisiting the Stöber method: inhomogeneity in silica shells. , 2011, Journal of the American Chemical Society.

[34]  D. Zhao,et al.  Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. , 2011, Angewandte Chemie.

[35]  Olivier Tenaillon,et al.  The population genetics of commensal Escherichia coli , 2010, Nature Reviews Microbiology.

[36]  Christopher T. Walsh,et al.  Antibiotics for Emerging Pathogens , 2009, Science.

[37]  Dongyuan Zhao,et al.  Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. , 2009, Angewandte Chemie.

[38]  T. Xia,et al.  Understanding biophysicochemical interactions at the nano-bio interface. , 2009, Nature materials.

[39]  Orr Spiegel,et al.  Mechanisms of long-distance seed dispersal. , 2008, Trends in ecology & evolution.

[40]  Lei Jiang,et al.  Bio‐Inspired, Smart, Multiscale Interfacial Materials , 2008 .

[41]  D. Zhao,et al.  Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. , 2008, Journal of the American Chemical Society.

[42]  J. Lifson,et al.  Distribution and three-dimensional structure of AIDS virus envelope spikes , 2006, Nature.

[43]  K. Sandhage,et al.  Rapid, room-temperature synthesis of antibacterial bionanocomposites of lysozyme with amorphous silica or titania. , 2006, Small.

[44]  Uri Banin,et al.  Selective Growth of Metal Tips onto Semiconductor Quantum Rods and Tetrapods , 2004, Science.

[45]  Jonathan S Dordick,et al.  Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[46]  Liberato Manna,et al.  Controlled growth of tetrapod-branched inorganic nanocrystals , 2003, Nature materials.

[47]  N. Sharon,et al.  Mechanism of lysozyme action. , 1969, Science.

[48]  Katharina Gaus,et al.  Pair correlation microscopy reveals the role of nanoparticle shape in intracellular transport and site of drug release. , 2017, Nature nanotechnology.

[49]  J. Croissant,et al.  One‐Pot Construction of Multipodal Hybrid Periodic Mesoporous Organosilica Nanoparticles with Crystal‐Like Architectures , 2015, Advanced materials.

[50]  Christina M. Payne,et al.  Fungal cellulases. , 2015, Chemical reviews.

[51]  T. Wood Fungal cellulases. , 1992, Biochemical Society transactions.