Approximate explicit receding horizon control of constrained nonlinear systems

An algorithm for the construction of an explicit piecewise linear state feedback approximation to nonlinear constrained receding horizon control is given. It allows such controllers to be implemented via an efficient binary tree search, avoiding real-time optimization. This is of significant benefit in applications that requires low real-time computational complexity or low software complexity. The method has a priori guarantee of asymptotic stability with region of attraction being a close inner approximation to the stabilizable set. This is achieved by ensuring that the approximation error does not exceed the stability margin.

[1]  Alberto Bemporad,et al.  The explicit solution of model predictive control via multiparametric quadratic programming , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[2]  Jie Yu,et al.  Unconstrained receding-horizon control of nonlinear systems , 2001, IEEE Trans. Autom. Control..

[3]  A. Grancharova,et al.  APPROXIMATE EXPLICIT MODEL PREDICTIVE CONTROL IMPLEMENTED VIA ORTHOGONAL SEARCH TREE PARTITIONING , 2002 .

[4]  A. Rantzer,et al.  Suboptimal dynamic programming with error bounds , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[5]  M. Kojima Strongly Stable Stationary Solutions in Nonlinear Programs. , 1980 .

[6]  Tor Arne Johansen,et al.  Approximate explicit model predictive control incorporating heuristics , 2002, Proceedings. IEEE International Symposium on Computer Aided Control System Design.

[7]  M. Morari,et al.  Optimal controllers for hybrid systems: stability and piecewise linear explicit form , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[8]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[9]  T. Johansen On multi-parametric nonlinear programming and explicit nonlinear model predictive control , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[10]  A. Rantzer Dynamic Programming via Convex Optimization , 1999 .

[11]  J. B. Rosen,et al.  Inequalities for Stochastic Nonlinear Programming Problems , 1964 .

[12]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[13]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[14]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[15]  D. Mayne,et al.  Robust receding horizon control of constrained nonlinear systems , 1993, IEEE Trans. Autom. Control..

[16]  H. Michalska,et al.  Receding horizon control of nonlinear systems , 1988, Proceedings of the 28th IEEE Conference on Decision and Control,.

[17]  John N. Tsitsiklis,et al.  Neuro-Dynamic Programming , 1996, Encyclopedia of Machine Learning.

[18]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[19]  A. Bemporad,et al.  Suboptimal explicit MPC via approximate multiparametric quadratic programming , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[20]  J. Maciejowski,et al.  Invariant sets for constrained nonlinear discrete-time systems with application to feasibility in model predictive control , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[21]  E. Gilbert,et al.  Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: Stability and moving-horizon approximations , 1988 .

[22]  Thomas Parisini,et al.  A receding-horizon regulator for nonlinear systems and a neural approximation , 1995, Autom..

[23]  H. ChenT,et al.  A Quasi-Infinite Horizon Nonlinear Model Predictive Control Scheme with Guaranteed Stability * , 1998 .

[24]  Alberto Bemporad,et al.  An algorithm for multi-parametric quadratic programming and explicit MPC solutions , 2003, Autom..

[25]  G. Nicolao,et al.  On the robustness of receding-horizon control with terminal constraints , 1996, IEEE Trans. Autom. Control..

[26]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[27]  Tor Arne Johansen,et al.  Approximate explicit constrained linear model predictive control via orthogonal search tree , 2003, IEEE Trans. Autom. Control..

[28]  T. Johansen,et al.  An algorithm for multi-parametric quadratic programming and explicit MPC solutions , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).