Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse

[1]  R. Tirumalai,et al.  STRUCTURE OF THE LAMBDA INTEGRASE CATALYTIC CORE , 1997 .

[2]  L. Bird,et al.  Crystal structure of the site‐specific recombinase, XerD , 1997, The EMBO journal.

[3]  A. Landy,et al.  The isomeric preference of Holliday junctions influences resolution bias by λ integrase , 1997 .

[4]  D. Sherratt,et al.  Action of site‐specific recombinases XerC and XerD on tethered Holliday junctions , 1997, The EMBO journal.

[5]  F. Dyda,et al.  Molecular Organization in Site-Specific Recombination: The Catalytic Domain of Bacteriophage HP1 Integrase at 2.7 Å Resolution , 1997, Cell.

[6]  T. Ellenberger,et al.  Flexibility in DNA Recombination: Structure of the Lambda Integrase Catalytic Core , 1997, Science.

[7]  A. C. Shaikh,et al.  The Cre Recombinase Cleaves the lox Site in trans * , 1997, The Journal of Biological Chemistry.

[8]  A. Landy,et al.  The isomeric preference of Holliday junctions influences resolution bias by lambda integrase. , 1997, The EMBO journal.

[9]  R. G. Lloyd,et al.  Crystal Structure of DNA Recombination Protein RuvA and a Model for Its Binding to the Holliday Junction , 1996, Science.

[10]  Werner Müller,et al.  Bypass of lethality with mosaic mice generated by Cre–loxP-mediated recombination , 1996, Current Biology.

[11]  D. Sherratt,et al.  Cis and trans in site‐specific recombination , 1996, Molecular microbiology.

[12]  P. Sigler,et al.  Structure of the oligomerization and L-arginine binding domain of the arginine repressor of Escherichia coli. , 1996, Journal of molecular biology.

[13]  J. Abrahams,et al.  Methods used in the structure determination of bovine mitochondrial F1 ATPase. , 1996, Acta crystallographica. Section D, Biological crystallography.

[14]  H. Fu,et al.  Phage display vectors for in vivo recombination of immunoglobulin heavy and light chain genes to make large combinatorial libraries. , 1996, Gene.

[15]  H. Berman,et al.  New parameters for the refinement of nucleic acid-containing structures. , 1996, Acta crystallographica. Section D, Biological crystallography.

[16]  M Aguet,et al.  Inducible gene targeting in mice , 1995, Science.

[17]  P. Chambon,et al.  Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[18]  D. Sherratt,et al.  Xer site‐specific recombination in vitro. , 1995, The EMBO journal.

[19]  W. Stark,et al.  Gatecrashers at the catalytic party. , 1995, Trends in genetics : TIG.

[20]  S. Nunes-Düby,et al.  Swapping DNA strands and sensing homology without branch migration in λ site-specific recombination , 1995, Current Biology.

[21]  S. Nunes-Düby,et al.  Swapping DNA strands and sensing homology without branch migration in lambda site-specific recombination. , 1995, Current biology : CB.

[22]  K. Rajewsky,et al.  Cre-loxP-mediated gene replacement: a mouse strain producing humanized antibodies , 1994, Current Biology.

[23]  A T Brünger,et al.  Protein hydration observed by X-ray diffraction. Solvation properties of penicillopepsin and neuraminidase crystal structures. , 1994, Journal of molecular biology.

[24]  R. Weisberg,et al.  Lambda integrase cleaves DNA in cis. , 1994, The EMBO journal.

[25]  A. Brünger,et al.  Torsion angle dynamics: Reduced variable conformational sampling enhances crystallographic structure refinement , 1994, Proteins.

[26]  D. Ow,et al.  Cre recombinase-mediated site-specific recombination between plant chromosomes. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[27]  J. Murray,et al.  Site-specific recombinases: tools for genome engineering. , 1993, Trends in genetics : TIG.

[28]  B. Sauer Manipulation of transgenes by site-specific recombination: use of Cre recombinase. , 1993, Methods in enzymology.

[29]  D. Sherratt,et al.  Catalysis by site-specific recombinases. , 1992, Trends in genetics : TIG.

[30]  B. Mosinger,et al.  Targeted oncogene activation by site-specific recombination in transgenic mice. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Jehee Lee,et al.  DNA cleavage in trans by the active site tyrosine during Flp recombination: Switching protein partners before exchanging strands , 1992, Cell.

[32]  R. Hoess,et al.  Evidence for a second conserved arginine residue in the integrase family of recombination proteins. , 1992, Protein engineering.

[33]  M. Carson RIBBONS 2.0 , 1991 .

[34]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[35]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[36]  R. Hoess,et al.  DNA specificity of the Cre recombinase resides in the 25 kDa carboxyl domain of the protein. , 1990, Journal of molecular biology.

[37]  M. Cox,et al.  Protein-based asymmetry and protein-protein interactions in FLP recombinase-mediated site-specific recombination. , 1990, The Journal of biological chemistry.

[38]  T. Steitz,et al.  Crystallization of Escherichia coli catabolite gene activator protein with its DNA binding site. The use of modular DNA. , 1990, Journal of molecular biology.

[39]  D. Sherratt,et al.  Site-specific recombination by Tn3 resolvase: Topological changes in the forward and reverse reactions , 1989, Cell.

[40]  A. Landy Dynamic, structural, and regulatory aspects of lambda site-specific recombination. , 1989, Annual review of biochemistry.

[41]  D. Lilley,et al.  The structure of the holliday junction, and its resolution , 1988, Cell.

[42]  R Lavery,et al.  The definition of generalized helicoidal parameters and of axis curvature for irregular nucleic acids. , 1988, Journal of biomolecular structure & dynamics.

[43]  C. Pargellis,et al.  Suicide recombination substrates yield covalent lambda integrase-DNA complexes and lead to identification of the active site tyrosine. , 1988, The Journal of biological chemistry.

[44]  N. Craig,et al.  The mechanism of conservative site-specific recombination. , 1988, Annual review of genetics.

[45]  P. Kitts,et al.  Homology-dependent interactions in phage λ site-specific recombination , 1987, Nature.

[46]  P. Kitts,et al.  Homology-dependent interactions in phage lambda site-specific recombination. , 1987, Nature.

[47]  R. Hoess,et al.  The role of the loxP spacer region in P1 site-specific recombination. , 1986, Nucleic acids research.

[48]  P Argos,et al.  The integrase family of site‐specific recombinases: regional similarities and global diversity. , 1986, The EMBO journal.

[49]  R. Hoess,et al.  Bacteriophage P1 site-specific recombination. Purification and properties of the Cre recombinase protein. , 1984, The Journal of biological chemistry.

[50]  R. Hoess,et al.  Interaction of the bacteriophage P1 recombinase Cre with the recombining site loxP. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[51]  R. Hoess,et al.  Studies on the properties of P1 site-specific recombination: Evidence for topologically unlinked products following recombination , 1983, Cell.

[52]  N. Sternberg,et al.  Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. , 1981, Journal of molecular biology.

[53]  M. Yarmolinsky,et al.  Site-specific recombination and its role in the life cycle of bacteriophage P1. , 1981, Cold Spring Harbor symposia on quantitative biology.

[54]  Nolan H. Sigal,et al.  Genetic recombination: the nature of a crossed strand-exchange between two homologous DNA molecules. , 1972, Journal of molecular biology.

[55]  M. Lings,et al.  Articles , 1967, Soil Science Society of America Journal.