CFD modeling of processes upstream of the catalyst for urea SCR NOx reduction systems in heavy-duty diesel applications

[1]  Olaf Deutschmann,et al.  Analysis of the Injection of Urea-Water-Solution for Automotive SCR DeNOx-Systems: Modeling of Two-Phase Flow and Spray/Wall-Interaction , 2006 .

[2]  G. Faeth Evaporation and combustion of sprays , 1983 .

[3]  Chung King Law,et al.  Multicomponent droplet combustion with rapid internal mixing , 1976 .

[4]  J. Colson,et al.  Thermal decomposition (pyrolysis) of urea in an open reaction vessel , 2004 .

[5]  Z. Gerald Liu,et al.  Development and Validation of a Predictive Model for DEF Injection and Urea Decomposition in Mobile SCR DeNOx Systems , 2010 .

[6]  B. Launder,et al.  The numerical computation of turbulent flows , 1990 .

[7]  Alexander Wokaun,et al.  Hydrolysis of Isocyanic Acid on SCR Catalysts , 2000 .

[8]  P. Rosin The Laws Governing the Fineness of Powdered Coal , 1933 .

[9]  James A. Miller,et al.  Mechanism and modeling of nitrogen chemistry in combustion , 1989 .

[10]  A. A. Amsden,et al.  Efficient multicomponent fuel algorithm , 2003 .

[11]  Martin Elsener,et al.  NOx-Reduction in Diesel Exhaust Gas with Urea and Selective Catalytic Reduction , 1996 .

[12]  M. Elsener,et al.  Urea-SCR: a promising technique to reduce NOx emissions from automotive diesel engines , 2000 .

[13]  A. Gosman,et al.  Mathematical Modelling of Wall Films Formed by Impinging Sprays , 1996 .

[14]  J. Fenger,et al.  Air pollution in the last 50 years - From local to global , 2009 .

[15]  Ji-Soo Ha,et al.  Numerical Prediction on the Characteristics of Spray-Induced Mixing and Thermal Decomposition of Urea Solution in SCR System , 2004 .

[16]  Anup Bandivadekar,et al.  Long-term greenhouse gas emission and petroleum reduction goals: Evolutionary pathways for the light-duty vehicle sector , 2010 .

[17]  W. Rodi,et al.  Influence of buoyancy and rotation on equations for the turbulent length scale , 1979 .

[18]  A. Gosman,et al.  Development of Methodology for Spray Impingement Simulation , 1995 .

[19]  J. Dukowicz A particle-fluid numerical model for liquid sprays , 1980 .

[20]  David W. Pershing,et al.  A model for prediction of selective noncatalytic reduction of nitrogen oxides by ammonia, urea, and cyanuric acid with mixing limitations in the presence of co , 1996 .

[21]  S. Orszag,et al.  Renormalization group analysis of turbulence. I. Basic theory , 1986 .

[22]  Young Sun Mok,et al.  Decomposition of Urea into NH3 for the SCR Process , 2004 .

[23]  Howard L. Fang,et al.  Urea thermolysis and NOx reduction with and without SCR catalysts , 2003 .

[24]  W. Sirignano,et al.  Fluid Dynamics and Transport of Droplets and Sprays , 1999 .

[25]  O. Deutschmann,et al.  Modeling and simulation of the injection of urea-water-solution for automotive SCR DeNOx-systems , 2007 .

[26]  Shazam Williams,et al.  Modelling and Optimization of SCR-Exhaust Aftertreatment Systems , 2005 .

[27]  T. Johnson Review of Diesel Emissions and Control , 2010 .

[28]  J. Storey,et al.  Low Temperature Urea Decomposition and SCR Performance , 2005 .

[29]  S. E. Tahry K-epsilon equation for compressible reciprocating engine flows , 1983 .

[30]  R. Reitz,et al.  Effect of drop breakup on fuel sprays , 1986 .

[31]  J. N. Chi,et al.  Modeling and Control of a Urea-SCR Aftertreatment System , 2005 .

[32]  A. Gosman,et al.  Aspects of Computer Simulation of Liquid-Fueled Combustors , 1983 .

[33]  Robert J. Kee,et al.  CHEMKIN-III: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics , 1996 .

[34]  James A. Miller,et al.  A chemical kinetic model for the selective reduction of nitric oxide by ammonia , 1981 .

[35]  Gordon E. Andrews,et al.  Real-World Vehicle Exhaust Emissions Monitoring: Review and Critical Discussion , 2009 .

[36]  W. Weibull A Statistical Distribution Function of Wide Applicability , 1951 .

[37]  Wolfgang Rodi,et al.  Experience with two-layer models combining the k-epsilon model with a one-equation model near the wall , 1991 .