Detecting entanglement of random states with an entanglement witness

The entanglement content of high-dimensional random pure states is almost maximal; nevertheless, we show that, due to the complexity of such states, the detection of their entanglement using witness operators is rather difficult. We discuss the case of unknown random states, and the case of known random states for which we can optimize the entanglement witness. Moreover, we show that coarse graining, modelled by considering mixtures of m random states instead of pure ones, leads to a decay in the entanglement detection probability exponential with m. Our results also allow us to explain the emergence of classicality in coarse grained quantum chaotic dynamics.

[1]  Page,et al.  Average entropy of a subsystem. , 1993, Physical review letters.

[2]  O. Gühne,et al.  03 21 7 2 3 M ar 2 00 6 Scalable multi-particle entanglement of trapped ions , 2006 .

[3]  R. Schack Using a quantum computer to investigate quantum chaos , 1997, quant-ph/9705016.

[4]  R. B. Blakestad,et al.  Creation of a six-atom ‘Schrödinger cat’ state , 2005, Nature.

[5]  B. Terhal Bell inequalities and the separability criterion , 1999, quant-ph/9911057.

[6]  A. J. Scott,et al.  Entangling power of the quantum baker's map , 2003, quant-ph/0305046.

[7]  G. Refael,et al.  Measuring entanglement entropies in many-body systems , 2006, cond-mat/0603004.

[8]  Jens Eisert,et al.  Quantitative entanglement witnesses , 2006, quant-ph/0607167.

[9]  M. Lewenstein,et al.  Relations between Entanglement Witnesses and Bell Inequalities , 2005, quant-ph/0504079.

[10]  S. Lloyd,et al.  Complexity as thermodynamic depth , 1988 .

[11]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[12]  Yaakov S Weinstein,et al.  Entanglement generation of nearly random operators. , 2005, Physical review letters.

[13]  Christian Kurtsiefer,et al.  Experimental detection of multipartite entanglement using witness operators. , 2004, Physical review letters.

[14]  E. Lubkin Entropy of an n‐system from its correlation with a k‐reservoir , 1978 .

[15]  V. Marčenko,et al.  DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .

[16]  O. Gühne,et al.  Estimating entanglement measures in experiments. , 2006, Physical review letters.

[17]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[18]  M. Saraceno Classical structures in the quantized baker transformation , 1990 .

[19]  J. Cirac,et al.  Characterization of separable states and entanglement witnesses , 2000, quant-ph/0005112.

[21]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[22]  J. Cirac,et al.  Optimization of entanglement witnesses , 2000, quant-ph/0005014.

[23]  Martin B. Plenio,et al.  An introduction to entanglement measures , 2005, Quantum Inf. Comput..

[24]  Ujjwal Sen,et al.  The separability versus entanglement problem , 2005, quant-ph/0508032.

[25]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[26]  H. Stöckmann,et al.  Quantum Chaos: An Introduction , 1999 .

[27]  Integration over matrix spaces with unique invariant measures , 2002, math-ph/0203042.