In situ X-ray absorption analysis of ∼1.8 nm dendrimer-encapsulated Pt nanoparticles during electrochemical CO oxidation.

We report an in situ X-ray absorption-fine structure (XAFS) spectroscopic analysis of ∼1.8 nm Pt dendrimer-encapsulated nanoparticles (DENs) during electrocatalytic oxidation of CO. The results indicate that Pt nanoparticles encapsulated within poly(amidoamine) (PAMAM) dendrimers and immobilized on a carbon electrode retain their electrocatalytic activity and are structurally stable for extended periods during CO oxidation. This is a significant finding, because nanoparticles in this size range are good experimental models for comparison to first-principles calculations if they remain stable.

[1]  Aaron Yevick,et al.  Effects of surface disorder on EXAFS modeling of metallic clusters , 2010 .

[2]  Satoshi Watanabe,et al.  Coordination and reduction processes in the synthesis of dendrimer-encapsulated Pt nanoparticles. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[3]  Kimihisa Yamamoto,et al.  Size-specific catalytic activity of platinum clusters enhances oxygen reduction reactions. , 2009, Nature chemistry.

[4]  G. Henkelman,et al.  Charge redistribution in core-shell nanoparticles to promote oxygen reduction. , 2009, The Journal of chemical physics.

[5]  Ib Chorkendorff,et al.  Adsorption-driven surface segregation of the less reactive alloy component. , 2009, Journal of the American Chemical Society.

[6]  A. Frenkel,et al.  Evidence for a terminal Pt(iv)-oxo complex exhibiting diverse reactivity , 2008, Nature.

[7]  Marc R. Knecht,et al.  Synthesis and Characterization of Pt Dendrimer-Encapsulated Nanoparticles: Effect of the Template on Nanoparticle Formation , 2008 .

[8]  Royce W Murray,et al.  Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. , 2008, Chemical reviews.

[9]  Xiaohua Huang,et al.  Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. , 2008, Accounts of chemical research.

[10]  J. Ledesma-García,et al.  Immobilization of dendrimer-encapsulated platinum nanoparticles on pretreated carbon-fiber surfaces and their application for oxygen reduction , 2008 .

[11]  K. Sasaki,et al.  Niobium oxide-supported platinum ultra-low amount electrocatalysts for oxygen reduction. , 2008, Physical chemistry chemical physics : PCCP.

[12]  R. Crooks,et al.  Effect of particle size on the kinetics of the electrocatalytic oxygen reduction reaction catalyzed by Pt dendrimer-encapsulated nanoparticles. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[13]  C. Roth,et al.  Kinetics of CO Poisoning in Simulated Reformate and Effect of Ru Island Morphology on PtRu Fuel Cell Catalysts As Determined by Operando X-ray Absorption Near Edge Spectroscopy , 2007 .

[14]  Arturo Martínez-Arias,et al.  Dynamic in situ observation of rapid size and shape change of supported Pd nanoparticles during CO/NO cycling. , 2007, Nature materials.

[15]  P. P. Wells,et al.  Potential dependence of segregation and surface alloy formation of a Ru modified carbon supported Pt catalyst , 2007 .

[16]  S. Mukerjee,et al.  CO Coverage/Oxidation Correlated with PtRu Electrocatalyst Particle Morphology in 0.3 M Methanol by In Situ XAS , 2007 .

[17]  Keith J Stevenson,et al.  Synergistic assembly of dendrimer-templated platinum catalysts on nitrogen-doped carbon nanotube electrodes for oxygen reduction. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[18]  R. Crooks,et al.  Effect of elemental composition of PtPd bimetallic nanoparticles containing an average of 180 atoms on the kinetics of the electrochemical oxygen reduction reaction. , 2007, Journal of the American Chemical Society.

[19]  P. Balbuena,et al.  Dendrimer-tetrachloroplatinate precursor interactions. 1. Hydration of Pt(II) species and PAMAM outer pockets. , 2007, The journal of physical chemistry. A.

[20]  P. Balbuena,et al.  Dendrimer-tetrachloroplatinate precursor interactions. 2. Noncovalent binding in PAMAM outer pockets. , 2007, The journal of physical chemistry. A.

[21]  H. Ploehn,et al.  EXAFS characterization of dendrimer-Pt nanocomposites used for the preparation of Pt/gamma-Al2O3 catalysts. , 2006, The journal of physical chemistry. B.

[22]  C. Batt,et al.  Self-assembly of dendrimer-encapsulated nanoparticle arrays using 2-D microbial S-layer protein biotemplates. , 2006, Biomacromolecules.

[23]  U. Stimming,et al.  Influence of particle agglomeration on the catalytic activity of carbon-supported Pt nanoparticles in CO monolayer oxidation , 2005 .

[24]  C. Roth,et al.  Determination of O[H] and CO coverage and adsorption sites on PtRu electrodes in an operating PEM fuel cell. , 2005, Journal of the American Chemical Society.

[25]  B. D. Chandler,et al.  Low-temperature activation conditions for PAMAM dendrimer templated Pt nanoparticles. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[26]  M. Hogarth,et al.  A PEM fuel cell for in situ XAS studies , 2005 .

[27]  M. Arenz,et al.  CO surface electrochemistry on Pt-nanoparticles: A selective review , 2005 .

[28]  P N Ross,et al.  The impact of geometric and surface electronic properties of pt-catalysts on the particle size effect in electrocatalysis. , 2005, The journal of physical chemistry. B.

[29]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[30]  W. O'grady,et al.  Determination of O and OH adsorption sites and coverage in situ on Pt electrodes from Pt L(2,3) X-ray absorption spectroscopy. , 2005, The journal of physical chemistry. B.

[31]  P. Ross,et al.  The effect of the particle size on the kinetics of CO electrooxidation on high surface area Pt catalysts. , 2005, Journal of the American Chemical Society.

[32]  R. Crooks,et al.  Electrocatalytic O2 reduction at glassy carbon electrodes modified with dendrimer-encapsulated Pt nanoparticles. , 2005, Journal of the American Chemical Society.

[33]  H. Xie,et al.  AFM characterization of dendrimer-stabilized platinum nanoparticles. , 2005, Langmuir.

[34]  Richard M Crooks,et al.  Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. , 2005, The journal of physical chemistry. B.

[35]  H. Yoshida,et al.  Quantitative determination of platinum oxidation state by XANES analysis , 2005 .

[36]  M. Eikerling,et al.  Size effects on reactivity of Pt nanoparticles in CO monolayer oxidation: the role of surface mobility. , 2004, Faraday discussions.

[37]  A. Russell,et al.  X-ray absorption spectroscopy of low temperature fuel cell catalysts. , 2004, Chemical Reviews.

[38]  Sanjeev Mukerjee,et al.  Electrocatalysis of CO Tolerance by Carbon-Supported PtMo Electrocatalysts in PEMFCs , 2004 .

[39]  H. Ploehn,et al.  Platinum ion uptake by dendrimers: an NMR and AFM study. , 2004, Inorganic chemistry.

[40]  W. O'grady,et al.  Determination of H Adsorption Sites on Pt/C Electrodes in HClO4 from Pt L23 X-ray Absorption Spectroscopy , 2004 .

[41]  V. Zaikovskii,et al.  CO monolayer oxidation at Pt nanoparticles supported on glassy carbon electrodes , 2003 .

[42]  E. Ticianelli,et al.  Studies of carbon monoxide oxidation on carbon-supported platinum-osmium electrocatalysts , 2003 .

[43]  D. Thompsett,et al.  In situ X-ray absorption spectroscopy and X-ray diffraction of fuel cell electrocatalysts , 2001 .

[44]  M Newville,et al.  IFEFFIT: interactive XAFS analysis and FEFF fitting. , 2001, Journal of synchrotron radiation.

[45]  J. Rehr,et al.  Theoretical approaches to x-ray absorption fine structure , 2000 .

[46]  I. V. Malakhov,et al.  In situ EXAFS study of Ru-containing electrocatalysts of oxygen reduction , 2000 .

[47]  A. Russell,et al.  EXAFS of carbon monoxide oxidation on supported Pt fuel cell electrocatalysts , 2000 .

[48]  S. Mukerjee,et al.  An In Situ X-Ray Absorption Spectroscopy Investigation of the Effect of Sn Additions to Carbon-Supported Pt Electrocatalysts Part I , 1999 .

[49]  A. Jentys,et al.  Estimation of mean size and shape of small metal particles by EXAFS , 1999 .

[50]  S. Taguchi,et al.  Correlation of the underpotential deposition (upd) of zinc ions on Pt(111), Pt(100), and Pt(110) with anion specific adsorption , 1998 .

[51]  G. Jobst,et al.  Surface modification of platinum thin film electrodes towards a defined roughness and microsporosity , 1997 .

[52]  S. Mukerjee,et al.  In Situ X‐Ray Absorption Studies of a Pt‐Ru Electrocatalyst , 1995 .

[53]  Sanjeev Mukerjee,et al.  Role of Structural and Electronic Properties of Pt and Pt Alloys on Electrocatalysis of Oxygen Reduction An In Situ XANES and EXAFS Investigation , 1995 .

[54]  A. Aldaz,et al.  Electrochemical behaviour of Pt(100) in various acidic media: Part II. On the relation between the voltammetric profiles induced by anion specific adsorption studied with a transfer technique preserving surface cleanliness and structure , 1992 .

[55]  J. Clavilier,et al.  Influence of specific adsorption of anions on the electrochemical behaviour of the Pt (100) surface in acid medium: Comparison with Pt (111) , 1989 .

[56]  R. W. Hoffman,et al.  EXAFS study of the nickel oxide electrode , 1987 .

[57]  D. F. Ogletree,et al.  LEED intensity analysis of the structures of clean Pt(111) and of CO adsorbed on Pt(111) in the c(4 × 2) arrangement , 1986 .

[58]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[59]  Allen J. Bard,et al.  Electroanalytical Chemistry: A Series of Advances , 1974 .

[60]  B. Conway,et al.  Surface oxidation and reduction of platinum electrodes: Coverage, kinetic and hysteresis studies , 1968 .

[61]  S. Gilman A STUDY OF THE ADSORPTION OF CARBON MONOXIDE AND OXYGEN ON PLATINUM. SIGNIFICANCE OF THE “POLARIZATION CURVE”1 , 1962 .