Spiers Memorial Lecture Quantum and semiclassical theory of chemical reaction rates

Transition state theory (TST) has provided the qualitative picture of chemical reaction rates for over sixty years. Recent theoretical developments, however, have made it possible to calculate rate constants fully quantum mechanically and efficiently, at least for small molecular systems; vestiges of TST can be seen both in the resulting flux correlation functions and in the algorithmic structure of the methodology itself. One approach for dealing with more complex molecular systems is the semiclassical (SC) initial value representation (IVR), which is essentially a way of generalizing classical molecular dynamics simulations to include quantum interference; electronic degrees of freedom in an electronically non-adiabatic process can also be included on a dynamically equivalent basis. Application of the SC-IVR to models of unimolecular isomerization and of electronically non-adiabatic transitions, both coupled to an infinite bath of harmonic oscillators, gives excellent agreement with (essentially exact) quantum path integral calculations for these systems over the entire range of coupling strength.

[1]  J. Doll,et al.  Equilibrium and dynamical Fourier path integral methods , 2007 .

[2]  William H. Miller,et al.  On the semiclassical description of quantum coherence in thermal rate constants , 1998 .

[3]  Nancy Makri,et al.  Semiclassical influence functionals for quantum systems in anharmonic environments 1 Presented at th , 1998 .

[4]  J. Shao,et al.  Quantum transition state theory: Perturbation expansion , 1998 .

[5]  William H. Miller,et al.  Semiclassical approximations for the calculation of thermal rate constants for chemical reactions in complex molecular systems , 1998 .

[6]  Eli Pollak,et al.  A new quantum transition state theory , 1998 .

[7]  Uwe Manthe,et al.  Accurate quantum calculations of thermal rate constants employing MCTDH: H2+OH→H+H2O and D2+OH→D+DOH , 1998 .

[8]  W. Miller,et al.  Semiclassical initial value representation for rotational degrees of freedom: The tunneling dynamics of HCl dimer , 1998 .

[9]  Michael F. Herman,et al.  A numerical test of different integral conditioning approximations for a semiclassical initial value representation for wavepacket propagation , 1998 .

[10]  Uwe Manthe,et al.  Quantum calculations of thermal rate constants and reaction probabilities: H2+CN→H+HCN , 1998 .

[11]  Michael F. Herman IMPROVING THE ACCURACY OF SEMICLASSICAL WAVEPACKET PROPAGATION USING INTEGRAL CONDITIONING TECHNIQUES , 1997 .

[12]  Haobin Wang,et al.  Thermal rate constant calculation using flux–flux autocorrelation functions: Application to Cl+H2→HCl+H reaction , 1997 .

[13]  P. Brumer,et al.  SEMICLASSICAL INITIAL VALUE THEORY FOR DISSOCIATION DYNAMICS , 1997 .

[14]  S. Hammes-Schiffer,et al.  Proton-coupled electron transfer reactions in solution: Molecular dynamics with quantum transitions for model systems , 1997 .

[15]  W. Miller,et al.  Semiclassical initial value representation for electronically nonadiabatic molecular dynamics , 1997 .

[16]  D. Manolopoulos,et al.  Semiclassical dynamics in up to 15 coupled vibrational degrees of freedom , 1997 .

[17]  U. Manthe,et al.  A multi-configurational time-dependent Hartree approach to the direct calculation of thermal rate constants , 1997 .

[18]  William H. Miller,et al.  Mixed semiclassical-classical approaches to the dynamics of complex molecular systems , 1997 .

[19]  F. Grossmann TIME-DEPENDENT SEMICLASSICAL CALCULATION OF RESONANCE LIFETIMES , 1996 .

[20]  S. Garashchuk,et al.  Wave packet correlation function approach to H2(ν)+H→H+H2(ν′): semiclassical implementation , 1996 .

[21]  W. Miller,et al.  Semiclassical calculation of Franck-Condon intensities for reactive systems , 1996 .

[22]  Z. Schuss New trends in reaction rate theory , 1996 .

[23]  John C. Light,et al.  CUMULATIVE REACTION PROBABILITY VIA TRANSITION STATE WAVE PACKETS , 1996 .

[24]  C. Martens,et al.  An effective Hamiltonian‐based method for mixed quantum‐classical dynamics on coupled electronic surfaces , 1996 .

[25]  H. Berendsen,et al.  Approach to nonadiabatic transitions by density matrix evolution and molecular dynamics simulations , 1996 .

[26]  D. Manolopoulos,et al.  A new semiclassical initial value method for Franck-Condon spectra , 1996 .

[27]  P. Saalfrank,et al.  Hydrogen transfer in vibrationally relaxing benzoic acid dimers: Time‐dependent density matrix dynamics and infrared spectra , 1996 .

[28]  J. A. McCammon,et al.  Quantum-Classical Molecular Dynamics Simulations of Proton Transfer Processes in Molecular Complexes and in Enzymes , 1996 .

[29]  R. Kapral,et al.  Dynamics of proton transfer in mesoscopic clusters , 1996, chem-ph/9601001.

[30]  R. Levine,et al.  Short-time dynamics on several electronic states: formalism and computational study of I2 in rare gas solvents , 1995 .

[31]  Hua Guo,et al.  A linear chain hybrid quantum/classical model for the photodissociation and recombination of I2(A) in rare gas matrices , 1995 .

[32]  D. Manolopoulos,et al.  APPLICATION OF THE FROZEN GAUSSIAN APPROXIMATION TO THE PHOTODISSOCIATION OF CO2 , 1995 .

[33]  G. Voth,et al.  Semiclassical approximations to quantum dynamical time correlation functions , 1995 .

[34]  A. McCoy Transition state dynamics of chemical reactions in clusters: A six‐dimensional study of Ar(ClHCl) , 1995 .

[35]  G. Voth,et al.  The Computation of Electron Transfer Rates: The Nonadiabatic Instanton Solution. , 1995 .

[36]  R. Gerber,et al.  Electronic excitation dynamics of Li(H2)2: Dissociation mechanisms, lifetimes, and the validity of a hybrid quantum/classical approach , 1995 .

[37]  P. Brumer,et al.  Uniform semiclassical wave-packet propagation and eigenstate extraction in a smooth chaotic system. , 1994, Physical review letters.

[38]  Eric J. Heller,et al.  Semiclassical calculation and analysis of dynamical systems with mixed phase space , 1994 .

[39]  N. Makri,et al.  Quantum rates for a double well coupled to a dissipative bath: Accurate path integral results and comparison with approximate theories , 1994 .

[40]  S. Hammes-Schiffer,et al.  Proton transfer in solution: Molecular dynamics with quantum transitions , 1994 .

[41]  Brumer,et al.  Semiclassical propagation: Phase indices and the initial-value formalism. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[42]  H. Metiu,et al.  Absorption spectrum calculations for a system having a few quantum and many ‘‘classical’’ degrees of freedom , 1994 .

[43]  Nancy Makri,et al.  Path integrals for dissipative systems by tensor multiplication. Condensed phase quantum dynamics for arbitrarily long time , 1994 .

[44]  K. Kay,et al.  Integral expressions for the semiclassical time‐dependent propagator , 1994 .

[45]  W. Miller,et al.  Semi-classical correction for quantum-mechanical scattering , 1994 .

[46]  William H. Miller,et al.  The cumulative reaction probability as eigenvalue problem , 1993 .

[47]  William H. Miller,et al.  Beyond transition-state theory: A rigorous quantum theory of chemical reaction rates , 1993 .

[48]  J. Light,et al.  Evaluation of thermal rate constants in the eigenbasis of a Hamiltonian with an optical potential , 1992 .

[49]  U. Manthe,et al.  Wave‐packet dynamics within the multiconfiguration Hartree framework: General aspects and application to NOCl , 1992 .

[50]  W. Miller,et al.  Quantum mechanical reaction probabilities via a discrete variable representation-absorbing boundary condition Green's function , 1992 .

[51]  Heller,et al.  Semiclassical propagation: How long can it last? , 1992, Physical review letters.

[52]  P. Brumer,et al.  Semiclassical collision theory in the initial value representation: Efficient numerics and reactive formalism , 1992 .

[53]  W. Miller,et al.  Calculation of the cumulative reaction probability via a discrete variable representation with absorbing boundary conditions , 1992 .

[54]  William H. Miller,et al.  Comment on: Semiclassical time evolution without root searches , 1991 .

[55]  E. Heller Reply to Comment on: Semiclassical time evolution without root searches: Comments and perspective , 1991 .

[56]  P. N. Day,et al.  Calculation of thermal rate coefficients from the quantum flux autocorrelation function: Converged results and variational quantum transition state theory for O+HD ⇆ OD+H and O+HD ⇆ OH+D , 1991 .

[57]  Chandler,et al.  Coherent-incoherent transition and relaxation in condensed-phase tunneling systems. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[58]  Joel M. Bowman,et al.  Reduced dimensionality theory of quantum reactive scattering , 1991 .

[59]  Eric J. Heller,et al.  Cellular dynamics: A new semiclassical approach to time‐dependent quantum mechanics , 1991 .

[60]  William H. Miller,et al.  Recent Advances in Quantum Mechanical Reactive Scattering Theory, Including Comparison of Recent Experiments with Rigorous Calculations of State-to-State Cross Sections for the H/D+H2→H2/HD+H Reactions , 1990 .

[61]  J. Tully Molecular dynamics with electronic transitions , 1990 .

[62]  J. Light,et al.  A split interaction representation for quantum correlation functions of dissociative systems , 1990 .

[63]  U. Manthe,et al.  The multi-configurational time-dependent Hartree approach , 1990 .

[64]  G. Voth,et al.  Rigorous formulation of quantum transition state theory and its dynamical corrections , 1989 .

[65]  P. Wolynes,et al.  Monte Carlo methods for real‐time quantum dynamics of dissipative systems , 1988 .

[66]  W. Miller,et al.  Monte carlo integration with oscillatory integrands: implications for feynman path integration in real time , 1987 .

[67]  T. Park,et al.  Unitary quantum time evolution by iterative Lanczos reduction , 1986 .

[68]  Michael F. Herman Time reversal and unitarity in the frozen Gaussian approximation for semiclassical scattering , 1986 .

[69]  W. Miller,et al.  ‘‘Direct’’ calculation of quantum mechanical rate constants via path integral methods: Application to the reaction path Hamiltonian, with numerical test for the H+H2 reaction in 3D , 1985 .

[70]  E. Kluk,et al.  A semiclasical justification for the use of non-spreading wavepackets in dynamics calculations , 1984 .

[71]  W. Miller,et al.  Classical models for electronic degrees of freedom: Quenching of Br*(2P1/2) by collision with H2 in three dimensions , 1984 .

[72]  William H. Miller,et al.  Quantum mechanical rate constants for bimolecular reactions , 1983 .

[73]  B. Berne,et al.  On the calculation of time correlation functions in quantum systems: Path integral techniquesa) , 1983 .

[74]  Mark A. Ratner,et al.  Dissociation dynamics of Ar3 in the time-dependent self-consistent field (TDSCF) approximation , 1983 .

[75]  W. Miller,et al.  Classical model for electronic degrees of freedom: charge transfer in Na + I collisions , 1982 .

[76]  Mark A. Ratner,et al.  Time‐dependent self‐consistent field approximation for intramolecular energy transfer. I. Formulation and application to dissociation of van der Waals molecules , 1982 .

[77]  W. Miller,et al.  Classical trajectory models for electronically nonadiabatic collision processes: A classical valence bond model for electronic degrees of freedom , 1981 .

[78]  B. C. Garrett,et al.  Variational Transition State Theory , 1980 .

[79]  A. Orel CLASSICAL MODEL FOR LASER-INDUCED NON-ADIABATIC COLLISION PROCESSES , 1980 .

[80]  H. Schaefer,et al.  Reaction path Hamiltonian: Tunneling effects in the unimolecular isomerization HNC→HCN , 1980 .

[81]  Hans-Dieter Meyer,et al.  Analysis and extension of some recently proposed classical models for electronic degrees of freedom , 1980 .

[82]  W. Miller,et al.  Classical models for electronic degrees of freedom: Derivation via spin analogy and application to F*+H2→F+H2 , 1979 .

[83]  W. Miller,et al.  A classical analog for electronic degrees of freedom in nonadiabatic collision processes , 1979 .

[84]  Michael E. Coltrin,et al.  A new tunneling path for reactions such as H+H2→H2+H , 1977 .

[85]  William H. Miller,et al.  Semiclassical transition state theory for nonseparable systems: Application to the collinear H+H2 reaction , 1975 .

[86]  W. Miller Path integral representation of the reaction rate constant in quantum mechanical transition state theory , 1975 .

[87]  W. Miller Semiclassical limit of quantum mechanical transition state theory for nonseparable systems , 1975 .

[88]  William H. Miller,et al.  Quantum mechanical transition state theory and a new semiclassical model for reaction rate constants , 1974 .

[89]  P. Pechukas,et al.  Quantum transition state theory , 1974 .

[90]  P. Pechukas,et al.  On transition‐state theory and the classical mechanics of collinear collisions , 1973 .

[91]  William H. Miller,et al.  Classical S Matrix: Numerical Application to Inelastic Collisions , 1970 .

[92]  Tsunenobu Yamamoto,et al.  Quantum Statistical Mechanical Theory of the Rate of Exchange Chemical Reactions in the Gas Phase , 1960 .

[93]  J. Light,et al.  The quantum transition state wavepacket method , 1998 .

[94]  J. Tully Mixed quantum–classical dynamics , 1998 .

[95]  M. Thoss,et al.  Semiclassical Description of Nonadiabatic Quantum Dynamics , 1997 .

[96]  William H. Miller,et al.  On the “direct” calculation of thermal rate constants. II. The flux-flux autocorrelation function with absorbing potentials, with application to the O+HCl→OH+Cl reaction , 1997 .

[97]  F. Grossmann,et al.  Semiclassical Approach to the Hydrogen-exchange Reaction- Reactive and Transition-state Dynamics , 1997 .

[98]  W. Miller,et al.  Semiclassical calculation of cumulative reaction probabilities , 1996 .

[99]  W. Miller,et al.  QUANTUM MECHANICAL CALCULATION OF THE RAT CONSTANT FOR THE REACTION H+O2OH+O , 1994 .

[100]  R. Kosloff Propagation Methods for Quantum Molecular Dynamics , 1994 .

[101]  V. Filinov,et al.  Calculation of the feynman integrals by means of the Monte Carlo method , 1986 .

[102]  E. Kluk,et al.  Comparison of the propagation of semiclassical frozen Gaussian wave functions with quantum propagation for a highly excited anharmonic oscillator , 1986 .

[103]  W. Miller,et al.  CLASSICAL MODEL FOR ELECTRONICALLY NON-ADIABATIC COLLISION PROCESSES: RESONANCE EFFECTS IN ELECTRONIC-VIBRATIONAL ENERGY TRANSFER , 1981 .

[104]  John E. Adams,et al.  Reaction path Hamiltonian for polyatomic molecules , 1980 .

[105]  W. Miller Semi-classical theory for non-separable systems:. Construction of “good” action-angle variables for reaction rate constants , 1977 .

[106]  William H. Miller,et al.  ANALYTIC CONTINUATION OF CLASSICAL MECHANICS FOR CLASSICALLY FORBIDDEN COLLISION PROCESSES. , 1972 .

[107]  M. Polanyi,et al.  Diabatic reactions and primary chemiluminescence , 1935 .