Second order Einstein deformations

We study the integrability to second order of infinitesimal Einstein deformations on compact Riemannian and in particular on K\"ahler manifolds. We find a new way of expressing the necessary and sufficient condition for integrability to second order, which also gives a very clear and compact way of writing the Koiso obstruction. As an application we consider the K\"ahler case, where the condition can be further simplified and in complex dimension $3$ turns out to be purely algebraic. One of our main results is the complete and explicit description of infinitesimal Einstein deformation integrable to second order on the complex $2$-plane Grassmannian, which also has a quaternion K\"ahler structure. As a striking consequence we find that the symmetric Einstein metric on the Grassmannian $ \mathrm{Gr}_2(\bbC^{n+2})$ for $n$ odd is rigid.

[1]  Thomas Murphy,et al.  Rigidity of SUn-Type Symmetric Spaces , 2021, International Mathematics Research Notices.

[2]  U. Semmelmann,et al.  Conformal Killing forms in Kähler geometry , 2020, Illinois Journal of Mathematics.

[3]  Uwe Semmelmann,et al.  The $G_2$ geometry of $3$-Sasaki structures , 2021, 2101.04494.

[4]  U. Semmelmann,et al.  Deformations of nearly $G_2$-structures , 2020, 2007.01657.

[5]  Stuart J. Hall,et al.  Compact Hermitian Symmetric Spaces, Coadjoint Orbits, and the Dynamical Stability of the Ricci Flow , 2018, The Journal of Geometric Analysis.

[6]  Stuart J. Hall The canonical Einstein metric on G2 is dynamically unstable under the Ricci flow , 2018, Bulletin of the London Mathematical Society.

[7]  Lorenzo Foscolo,et al.  Deformation theory of nearly Kähler manifolds , 2016, J. Lond. Math. Soc..

[8]  Andrei Moroianu,et al.  Killing and conformal Killing tensors , 2015, 1512.03734.

[9]  K. Kröncke Rigidity and Infinitesimal Deformability of Ricci Solitons , 2014, 1408.6751.

[10]  A. Spiro,et al.  On Moduli Spaces of Ricci Solitons , 2013, 1302.4307.

[11]  Craig van Coevering Deformations of Killing spinors on Sasakian and 3-Sasakian manifolds , 2013, 1301.3479.

[12]  P. Nagy Connections with totally skew-symmetric torsion and nearly-Kähler geometry , 2010 .

[13]  Xiaodong Wang,et al.  On the variational stability of Kähler-Einstein metrics , 2007 .

[14]  N. Bergeron Infinitesimal isospectral deformations of the grassmannian of 3-planes in R6 , 2007 .

[15]  H. Goldschmidt,et al.  Radon Transforms and the Rigidity of the Grassmannians , 2004 .

[16]  P. Gauduchon,et al.  Hamiltonian 2-Forms in Kähler Geometry, I General Theory , 2002, math/0202280.

[17]  D. Alekseevsky,et al.  Spectral properties of the twistor fibration of a quaternion Kähler manifold , 2000 .

[18]  Mckenzie Y. Wang,et al.  Einstein metrics on $S^{2}$-bundles , 1998 .

[19]  U. Semmelmann,et al.  Quaternionic Killing Spinors , 1997, dg-ga/9706017.

[20]  T. Akahori,et al.  An analogy of Tian-Todorov theorem on deformations of CR-structures , 1993 .

[21]  Mckenzie Y. Wang,et al.  Einstein metrics on principal torus bundles , 1990 .

[22]  N. Koiso Einstein metrics and complex structures , 1983 .

[23]  S. Salamon Quaternionic Kähler manifolds , 1982 .

[24]  J. Bourguignon Les variétés de dimension 4 à signature non nulle dont la courbure est harmonique sont d'Einstein , 1981 .

[25]  N. Koiso Rigidity and stability of Einstein metrics---the case of compact symmetric spaces , 1980 .