Bidirectional chemo-switching of spin state in a microporous framework.

The ins and outs of spin: Using the microporous coordination polymer {Fe(pz)[Pt(CN)(4)]} (1, pz=pyrazine), incorporating spin-crossover subunits, two-directional magnetic chemo-switching is achieved at room temperature. In situ magnetic measurements following guest vapor injection show that most guest molecules transform 1 from the low-spin (LS) state to the high-spin (HS) state, whereas CS(2) uniquely causes the reverse HS-to-LS transition.

[1]  J. Real,et al.  Communication between iron(II) building blocks in cooperative spin transition phenomena , 2003 .

[2]  J. McGarvey,et al.  One shot laser pulse induced reversible spin transition in the spin-crossover complex [Fe(C4H4N2){Pt(CN)4}] at room temperature. , 2005, Angewandte Chemie.

[3]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[4]  Y. Kawazoe,et al.  Highly controlled acetylene accommodation in a metal–organic microporous material , 2005, Nature.

[5]  A. Hauser,et al.  Cooperative phenomena and light-induced bistability in iron(II) spin-crossover compounds , 1999 .

[6]  C. Rovira,et al.  A nanoporous molecular magnet with reversible solvent-induced mechanical and magnetic properties , 2003, Nature materials.

[7]  P. Gütlich,et al.  Light-induced excited spin state trapping in a transition-metal complex: The hexa-1-propyltetrazole-iron (II) tetrafluoroborate spin-crossover system , 1984 .

[8]  M. Zaworotko,et al.  From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. , 2001, Chemical reviews.

[9]  A. Hauser,et al.  Thermisch und optisch schaltbare Eisen(II)‐Komplexe , 1994 .

[10]  G. J. Halder,et al.  Guest-Dependent Spin Crossover in a Nanoporous Molecular Framework Material , 2002, Science.

[11]  Jinho Oh,et al.  A homochiral metal–organic porous material for enantioselective separation and catalysis , 2000, Nature.

[12]  Yann Garcia,et al.  Spin crossover in Mn(II), Mn(III), Cr(II) and Co(III) coordination compounds, In Spin crossover in transition metal compounds II, Eds. P. Gütlich, H.A. Goodwin , 2004 .

[13]  K. Hashimoto,et al.  Humidity-induced magnetization and magnetic pole inversion in a cyano-bridged metal assembly , 2004, Nature materials.

[14]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[15]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[16]  A. Bousseksou,et al.  Spin Crossover in a Catenane Supramolecular System , 1995, Science.

[17]  K. Chapman,et al.  Single-crystal to single-crystal structural transformation and photomagnetic properties of a porous iron(II) spin-crossover framework. , 2008, Journal of the American Chemical Society.

[18]  Odile Stéphan,et al.  Spin-crossover coordination nanoparticles. , 2008, Inorganic chemistry.

[19]  J. Real,et al.  Thermal, pressure and light switchable spin-crossover materials. , 2005, Dalton transactions.

[20]  S. Kitagawa,et al.  Dynamic motion of building blocks in porous coordination polymers. , 2006, Angewandte Chemie.

[21]  G. Molnár,et al.  Single-laser-shot-induced complete bidirectional spin transition at room temperature in single crystals of (FeII(pyrazine)(Pt(CN)4)). , 2008, Journal of the American Chemical Society.

[22]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[23]  C. Janiak Engineering coordination polymers towards applications , 2003 .

[24]  Susumu Kitagawa,et al.  Chemistry of coordination space of porous coordination polymers , 2007 .

[25]  L. MacGillivray,et al.  Inverted metal-organic frameworks: solid-state hosts with modular functionality , 2003 .

[26]  Philipp Gütlich,et al.  Spin-crossover nanocrystals with magnetic, optical, and structural bistability near room temperature. , 2008, Angewandte Chemie.

[27]  S. Kitagawa,et al.  Reversible water-induced magnetic and structural conversion of a flexible microporous Ni(II)Fe(III) ferromagnet. , 2007, Journal of the American Chemical Society.

[28]  S. Kitagawa,et al.  Funktionale poröse Koordinationspolymere , 2004 .

[29]  M. Rosseinsky,et al.  Recent developments in metal–organic framework chemistry: design, discovery, permanent porosity and flexibility ☆ , 2004 .

[30]  A. Zwick,et al.  Metal dilution effects on the spin-crossover properties of the three-dimensional coordination polymer Fe(pyrazine)[Pt(CN)4]. , 2005, The journal of physical chemistry. B.

[31]  Michael O'Keeffe,et al.  Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks. , 2005, Accounts of chemical research.

[32]  O. Kahn,et al.  Spin-Transition Polymers: From Molecular Materials Toward Memory Devices , 1998 .

[33]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[34]  J. Real,et al.  Cooperative spin crossover behavior in cyanide-bridged Fe(II)-M(II) bimetallic 3D Hofmann-like networks (M = Ni, Pd, and Pt). , 2001, Inorganic chemistry.

[35]  Philipp Gütlich,et al.  Thermal and Optical Switching of Iron(II) Complexes , 1994 .

[36]  Christophe Vieu,et al.  A Combined Top‐Down/Bottom‐Up Approach for the Nanoscale Patterning of Spin‐Crossover Coordination Polymers , 2007 .

[37]  J. Veciana,et al.  Old materials with new tricks: multifunctional open-framework materials. , 2007, Chemical Society reviews.

[38]  C. Serre,et al.  Crystallized frameworks with giant pores: are there limits to the possible? , 2005, Accounts of chemical research.