Improving the Rate of Convergence of High-Order Finite Elements on Polyhedra I: A Priori Estimates

ABSTRACT Let 𝒯 k be a sequence of triangulations of a polyhedron Ω ⊂ ℝ n and let S k be the associated finite element space of continuous, piecewise polynomials of degree m. Let u k ∈ S k be the finite element approximation of the solution u of a second-order, strongly elliptic system Pu = f with zero Dirichlet boundary conditions. We show that a weak approximation property of the sequence S k ensures optimal rates of convergence for the sequence u k . The method relies on certain a priori estimates in weighted Sobolev spaces for the system Pu = 0 that we establish. The weight is the distance to the set of singular boundary points. We obtain similar results for the Poisson problem with mixed Dirichlet–Neumann boundary conditions on a polygon.

[1]  Michael Taylor,et al.  Partial Differential Equations I: Basic Theory , 1996 .

[2]  Vladimir Maz’ya,et al.  Weighted Lp estimates of solutions to boundary value problems for second order elliptic systems in polyhedral domains , 2003 .

[3]  Ludmil T. Zikatanov,et al.  Improving the rate of convergence of ‘high order finite elements’ on polygons and domains with cusps , 2005, Numerische Mathematik.

[4]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[5]  M. Dauge Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions , 1988 .

[6]  I. Babuska,et al.  Numerical treatment of vertex singularities and intensity factors for mixed boundary value problems for the Laplace equation in R 3 , 1994 .

[7]  Douglas N. Arnold,et al.  Well-posedness of the fundamental boundary value problems for constrained anisotropic elastic materials , 1987 .

[8]  Bernd Ammann,et al.  On the geometry of Riemannian manifolds with a Lie structure at infinity , 2004, Int. J. Math. Math. Sci..

[9]  Johannes Elschner,et al.  The double layer potential operator over polyhedral domains i: solvability in weighted sobolev spaces , 1992 .

[10]  L. Wahlbin On the sharpness of certain local estimates for ¹ projections into finite element spaces: influence of a re-entrant corner , 1984 .

[11]  Carlos E. Kenig,et al.  The Inhomogeneous Dirichlet Problem in Lipschitz Domains , 1995 .

[12]  Monique Dauge,et al.  Neumann and mixed problems on curvilinear polyhedra , 1992 .

[13]  S. Moroianu,et al.  FREDHOLM THEORY FOR DEGENERATE PSEUDODIFFERENTIAL OPERATORS ON MANIFOLDS WITH FIBERED BOUNDARIES , 2001 .

[14]  V. Nistor,et al.  Sobolev spaces and regularity for polyhedral domains , 2004 .

[15]  H. Beckert,et al.  J. L. Lions and E. Magenes, Non‐Homogeneous Boundary Value Problems and Applications, II. (Die Grundlehren d. Math. Wissenschaften, Bd. 182). XI + 242 S. Berlin/Heidelberg/New York 1972. Springer‐Verlag. Preis geb. DM 58,— , 1973 .

[16]  A. Erkip,et al.  Normal solvability of elliptic boundary value problems on asymptotically flat manifolds , 1992 .

[17]  A. Aziz The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations , 1972 .

[18]  B. Plamenevskii,et al.  Elliptic Problems in Domains with Piecewise Smooth Boundaries , 1994 .

[19]  Jinchao Xu,et al.  Regularity estimates for elliptic boundary value problems in Besov spaces , 2003, Math. Comput..

[20]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[21]  Ludmil T. Zikatanov,et al.  Improving the Rate of Convergence of High-Order Finite Elements on Polyhedra II: Mesh Refinements and Interpolation , 2007 .

[22]  E. N. Dancer ELLIPTIC PROBLEMS IN DOMAINS WITH PIECEWISE SMOOTH BOUNDARIES (de Gruyter Expositions in Mathematics 13) , 1996 .

[23]  V. A. Kondrat'ev,et al.  Boundary problems for elliptic equations in domains with conical or angular points , 1967 .

[24]  Ivo Babuška,et al.  Regularity of the solutions for elliptic problems on nonsmooth domains in ℝ3, Part I: countably normed spaces on polyhedral domains , 1997, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[25]  Boundary integral operators on curved polygons , 1983 .

[26]  L. Zikatanov,et al.  Boundary value problems and regularity on polyhedral domains , 2004 .

[27]  G. Grubb On the Functional Calculus of Pseudo-Differential Boundary Problems , 1984 .

[28]  Melrose,et al.  Geometric Scattering Theory , 1995 .

[29]  Ivo Babuska,et al.  Finite element method for domains with corners , 1970, Computing.

[30]  Ernst P. Stephan,et al.  Regularity of mixed boundary value problems in ℝ3 and boundary element methods on graded meshes , 1990 .

[31]  M. Dauge Elliptic boundary value problems on corner domains , 1988 .

[32]  L. Wahlbin,et al.  Local behavior in finite element methods , 1991 .

[33]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[34]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[35]  M. Mitrea,et al.  The Poisson problem with mixed boundary conditions in Sobolev and Besov spaces in non-smooth domains , 2007 .

[36]  Marius Mitrea,et al.  Boundary layer methods for Lipschitz domains in Riemannian manifolds , 1999 .

[37]  Serge Nicaise,et al.  Dirichlet problems in polyhedral domains II: approximation by FEM and BEM , 1995 .

[38]  Douglas N. Arnold,et al.  Regular Inversion of the Divergence Operator with Dirichlet Boundary Conditions on a Polygon. , 1987 .

[39]  Anna L. Mazzucato,et al.  Partial Uniqueness and Obstruction to Uniqueness in Inverse Problems for Anisotropic Elastic Media , 2006 .

[40]  J. Roßmann,et al.  Elliptic Boundary Value Problems in Domains with Point Singularities , 2002 .