Relational Clustering

We introduce relational variants of neural gas, a very efficient and powerful neural clustering algorithm. It is assumed that a similarity or dissimilarity matrix is given which stems from Euclidean distance or dot product, respectively, however, the underlying embedding of points is unknown. In this case, one can equivalently formulate batch optimization in terms of the given similarities or dissimilarities, thus providing a way to transfer batch optimization to relational data. Interestingly, convergence is guaranteed even for general symmetric and nonsingular metrics.

[1]  Thomas Villmann,et al.  Magnification control for batch neural gas , 2007, ESANN.

[2]  Alessio Micheli,et al.  Recursive self-organizing network models , 2004, Neural Networks.

[3]  Tom Heskes,et al.  Self-organizing maps, vector quantization, and mixture modeling , 2001, IEEE Trans. Neural Networks.

[4]  E. Granum,et al.  Quantitative analysis of 6985 digitized trypsin G ‐banded human metaphase chromosomes , 1980, Clinical genetics.

[5]  Fabrice Rossi,et al.  A Fast Algorithm for the Self-Organizing Map on Dissimilarity Data , 2005 .

[6]  Klaus Obermayer,et al.  A Stochastic Self-Organizing Map for Proximity Data , 1999, Neural Computation.

[7]  Peter Tiño,et al.  A generative probabilistic approach to visualizing sets of symbolic sequences , 2004, KDD '04.

[8]  M. Vingron,et al.  Quantifying the local reliability of a sequence alignment. , 1996, Protein engineering.

[9]  Thomas Martinetz,et al.  'Neural-gas' network for vector quantization and its application to time-series prediction , 1993, IEEE Trans. Neural Networks.

[10]  Panu Somervuo,et al.  How to make large self-organizing maps for nonvectorial data , 2002, Neural Networks.

[11]  James C. Bezdek,et al.  Relational duals of the c-means clustering algorithms , 1989, Pattern Recognit..

[12]  A. K. Qin,et al.  Kernel neural gas algorithms with application to cluster analysis , 2004, ICPR 2004.

[13]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[14]  Thomas Villmann,et al.  Neural Gas Clustering for Dissimilarity Data with Continuous Prototypes , 2007, IWANN.

[15]  Thomas Villmann,et al.  Fuzzy classification by fuzzy labeled neural gas , 2006, Neural Networks.

[16]  Claus Bahlmann,et al.  Learning with Distance Substitution Kernels , 2004, DAGM-Symposium.

[17]  Bernhard Schölkopf,et al.  The Kernel Trick for Distances , 2000, NIPS.

[18]  Frank-Michael Schleif,et al.  Supervised median neural gas , 2006 .

[19]  Thomas Villmann,et al.  Batch and median neural gas , 2006, Neural Networks.

[20]  Horst Bunke,et al.  Edit distance-based kernel functions for structural pattern classification , 2006, Pattern Recognit..

[21]  Samuel Kaski,et al.  Discriminative Clustering of Yeast Stress Response , 2005 .

[22]  Klaus Obermayer,et al.  Self-organizing maps and clustering methods for matrix data , 2004, Neural Networks.

[23]  Klaus Obermayer,et al.  Classi cation on Pairwise Proximity , 2007 .

[24]  Alfons Juan-Císcar,et al.  On the use of normalized edit distances and an efficient k-NN search technique (k-AESA) for fast and accurate string classification , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[25]  Thomas Villmann,et al.  Margin based Active Learning for LVQ Networks , 2007, ESANN.

[26]  James C. Bezdek,et al.  Nerf c-means: Non-Euclidean relational fuzzy clustering , 1994, Pattern Recognit..

[27]  Thomas Villmann,et al.  Supervised Batch Neural Gas , 2006, ANNPR.

[28]  Jarkko Venna,et al.  Trustworthiness and metrics in visualizing similarity of gene expression , 2003, BMC Bioinformatics.