Mechanisms of Direction Selectivity in Macaque V1

[1]  D. Ferster,et al.  Direction selectivity of synaptic potentials in simple cells of the cat visual cortex. , 1997, Journal of neurophysiology.

[2]  R. Shapley,et al.  The use of m-sequences in the analysis of visual neurons: Linear receptive field properties , 1997, Visual Neuroscience.

[3]  G. Elston,et al.  The occipitoparietal pathway of the macaque monkey: comparison of pyramidal cell morphology in layer III of functionally related cortical visual areas. , 1997, Cerebral cortex.

[4]  R. C. Emerson Quadrature subunits in directionally selective simple cells: Spatiotemporal interactions , 1997, Visual Neuroscience.

[5]  Anthony J. Movshon,et al.  Visual Response Properties of Striate Cortical Neurons Projecting to Area MT in Macaque Monkeys , 1996, The Journal of Neuroscience.

[6]  D. Johnston,et al.  Active properties of neuronal dendrites. , 1996, Annual review of neuroscience.

[7]  D H Hubel,et al.  Visual responses in V1 of freely viewing monkeys. , 1996, Cold Spring Harbor symposia on quantitative biology.

[8]  D. Snodderly,et al.  Organization of striate cortex of alert, trained monkeys (Macaca fascicularis): ongoing activity, stimulus selectivity, and widths of receptive field activating regions. , 1995, Journal of neurophysiology.

[9]  H. Tamura,et al.  Mechanisms underlying direction selectivity of neurons in the primary visual cortex of the macaque. , 1995, Journal of neurophysiology.

[10]  P. Hammond,et al.  Spatial correlation of suppressive and excitatory receptive fields with direction selectivity of complex cells in cat striate cortex , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[11]  P. D. Spear,et al.  Effects of aging on the primate visual system: spatial and temporal processing by lateral geniculate neurons in young adult and old rhesus monkeys. , 1994, Journal of neurophysiology.

[12]  D. Pollen,et al.  Space-time spectra of complex cell filters in the macaque monkey: A comparison of results obtained with pseudowhite noise and grating stimuli , 1994, Visual Neuroscience.

[13]  L. Palmer,et al.  Contribution of linear mechanisms to the specification of local motion by simple cells in areas 17 and 18 of the cat , 1994, Visual Neuroscience.

[14]  D. Ferster,et al.  Linearity of summation of synaptic potentials underlying direction selectivity in simple cells of the cat visual cortex. , 1993, Science.

[15]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[16]  E. Peterhans,et al.  Functional Organization of Area V2 in the Alert Macaque , 1993, The European journal of neuroscience.

[17]  I. Ohzawa,et al.  Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. I. General characteristics and postnatal development. , 1993, Journal of neurophysiology.

[18]  J. Maunsell,et al.  Visual response latencies in striate cortex of the macaque monkey. , 1992, Journal of neurophysiology.

[19]  M. Cynader,et al.  Quantitative distribution of GABA-immunopositive and -immunonegative neurons and synapses in the monkey striate cortex (area 17). , 1992, Cerebral cortex.

[20]  E. Adelson,et al.  Directionally selective complex cells and the computation of motion energy in cat visual cortex , 1992, Vision Research.

[21]  Michael S. Landy,et al.  Computational models of visual processing , 1991 .

[22]  R. Shapley,et al.  Directional selectivity and spatiotemporal structure of receptive fields of simple cells in cat striate cortex. , 1991, Journal of neurophysiology.

[23]  D. Tolhurst,et al.  Evaluation of a linear model of directional selectivity in simple cells of the cat's striate cortex , 1991, Visual Neuroscience.

[24]  R. Shapley,et al.  Spatiotemporal receptive fields and direction selectivity , 1991 .

[25]  A. L. Humphrey,et al.  Spatial and temporal response properties of lagged and nonlagged cells in cat lateral geniculate nucleus. , 1990, Journal of neurophysiology.

[26]  L. Palmer,et al.  Contribution of linear spatiotemporal receptive field structure to velocity selectivity of simple cells in area 17 of cat , 1989, Vision Research.

[27]  D. G. Albrecht,et al.  Visual cortical receptive fields in monkey and cat: Spatial and temporal phase transfer function , 1989, Vision Research.

[28]  D. Ferster Spatially opponent excitation and inhibition in simple cells of the cat visual cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  A. L. Humphrey,et al.  Functionally distinct groups of X‐cells in the lateral geniculate nucleus of the cat , 1988, The Journal of comparative neurology.

[30]  D. Snodderly Effects of light and dark environments on macaque and human fixational eye movements , 1987, Vision Research.

[31]  R. Shapley,et al.  Linear mechanisms of directional selectivity in simple cells of cat striate cortex. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[32]  J. P. Jones,et al.  The two-dimensional spatial structure of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[33]  Klein,et al.  Nonlinear directionally selective subunits in complex cells of cat striate cortex. , 1987, Journal of neurophysiology.

[34]  D N Mastronarde,et al.  Two classes of single-input X-cells in cat lateral geniculate nucleus. I. Receptive-field properties and classification of cells. , 1987, Journal of neurophysiology.

[35]  P. Heggelund Quantitative studies of enhancement and suppression zones in the receptive field of simple cells in cat striate cortex. , 1986, The Journal of physiology.

[36]  Vivien A. Casagrande,et al.  W-like response properties of interlaminar zone cells in the lateral geniculate nucleus of a primate (Galago crassicaudatus) , 1986, Brain Research.

[37]  D. Snodderly,et al.  Eye position during fixation tasks: Comparison of macaque and human , 1985, Vision Research.

[38]  A J Ahumada,et al.  Model of human visual-motion sensing. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[39]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[40]  M. Colonnier,et al.  A laminar analysis of the number of round‐asymmetrical and flat‐symmetrical synapses on spines, dendritic trunks, and cell bodies in area 17 of the cat , 1985, The Journal of comparative neurology.

[41]  D. C. Essen,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[42]  Leo Ganz,et al.  Visual cortical mechanisms responsible for direction selectivity , 1984, Vision Research.

[43]  D. Whitteridge,et al.  The relationship of receptive field properties to the dendritic shape of neurones in the cat striate cortex. , 1984, The Journal of physiology.

[44]  L Ganz,et al.  Mechanism of directional selectivity in simple neurons of the cat's visual cortex analyzed with stationary flash sequences. , 1984, Journal of neurophysiology.

[45]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  P. Somogyi,et al.  Glutamate decarboxylase‐immunoreactive terminals of Golgi‐impregnated axoaxonic cells and of presumed basket cells in synaptic contact with pyramidal neurons of the cat's visual cortex , 1983, The Journal of comparative neurology.

[47]  T. Powell,et al.  The basal dendrites of Meynert cells in the striate cortex of the monkey , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[48]  J. Tigges,et al.  Areal and laminar distribution of neurons interconnecting the central visual cortical areas 17, 18, 19, and MT in squirrel monkey (Saimiri) , 1981, The Journal of comparative neurology.

[49]  L. Palmer,et al.  Comparison of responses to moving and stationary stimuli in cat striate cortex. , 1981, Journal of neurophysiology.

[50]  L. Palmer,et al.  Receptive-field structure in cat striate cortex. , 1981, Journal of neurophysiology.

[51]  B. Richmond,et al.  Implantation of magnetic search coils for measurement of eye position: An improved method , 1980, Vision Research.

[52]  K. Rockland,et al.  Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey , 1979, Brain Research.

[53]  J. Movshon,et al.  Spatial summation in the receptive fields of simple cells in the cat's striate cortex. , 1978, The Journal of physiology.

[54]  R. Doty,et al.  Foveal striate cortex of behaving monkey: single-neuron responses to square-wave gratings during fixation of gaze. , 1977, Journal of neurophysiology.

[55]  A. Sillito Inhibitory processes underlying the directional specificity of simple, complex and hypercomplex cells in the cat's visual cortex , 1977, The Journal of physiology.

[56]  R. C. Emerson,et al.  Simple striate neurons in the cat. II. Mechanisms underlying directional asymmetry and directional selectivity. , 1977, Journal of neurophysiology.

[57]  G L Gerstein,et al.  Spatiotemporal organization of cat lateral geniculate receptive fields. , 1976, Journal of neurophysiology.

[58]  J. Lund,et al.  The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase , 1975, The Journal of comparative neurology.

[59]  P. O. Bishop,et al.  Direction selectivity of simple striate cells: properties and mechanism. , 1975, Journal of neurophysiology.

[60]  A. Sillito The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. , 1975, The Journal of physiology.

[61]  W. B. Spatz An efferent connection of the solitary cells of Meynert. A study with horseradish peroxidase in the marmoset Callithrix , 1975, Brain Research.

[62]  D. Hubel,et al.  Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor , 1974, The Journal of comparative neurology.

[63]  G M Innocenti,et al.  Post-synaptic inhibitory components of the responses to moving stimuli in area 17. , 1974, Brain research.

[64]  J. Lund Organization of neurons in the visual cortex, area 17, of the monkey (Macaca mulatta) , 1973, The Journal of comparative neurology.

[65]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[66]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[67]  H. Barlow,et al.  Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit , 1964, The Journal of physiology.

[68]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[69]  D. Whitteridge,et al.  The representation of the visual field on the cerebral cortex in monkeys , 1961, The Journal of physiology.

[70]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[71]  D. Hubel Tungsten Microelectrode for Recording from Single Units. , 1957, Science.

[72]  D. Sholl The organization of the cerebral cortex , 1957 .

[73]  le Gros Clark We,et al.  The cells of Meynert in the visual cortex of the monkey. , 1942 .

[74]  W. le Gros Clark The cells of Meynert in the visual cortex of the monkey. , 1942, Journal of anatomy.

[75]  S. Stricker Handbuch der Lehre von den Geweben des Menschen und der Thiere , 1871 .