An adaptive model order reduction by proper snapshot selection for nonlinear dynamical problems

[1]  Kevin Carlberg,et al.  Adaptive h‐refinement for reduced‐order models , 2014, ArXiv.

[2]  Jens Kemper,et al.  Long‐time behavior of the proper orthogonal decomposition method , 2012, Numer. Linear Algebra Appl..

[3]  Charbel Farhat,et al.  Stabilization of projection‐based reduced‐order models , 2012 .

[4]  C. Farhat,et al.  Efficient non‐linear model reduction via a least‐squares Petrov–Galerkin projection and compressive tensor approximations , 2011 .

[5]  P Kerfriden,et al.  Bridging Proper Orthogonal Decomposition methods and augmented Newton-Krylov algorithms: an adaptive model order reduction for highly nonlinear mechanical problems. , 2011, Computer methods in applied mechanics and engineering.

[6]  Francisco Chinesta,et al.  Recent Advances and New Challenges in the Use of the Proper Generalized Decomposition for Solving Multidimensional Models , 2010 .

[7]  Boglárka G.-Tóth,et al.  Introduction to Nonlinear and Global Optimization , 2010 .

[8]  P. Ladevèze,et al.  The LATIN multiscale computational method and the Proper Generalized Decomposition , 2010 .

[9]  P. Wriggers Nonlinear Finite Element Methods , 2008 .

[10]  Michael Bartholomew-Biggs,et al.  Nonlinear Optimization with Engineering Applications , 2008 .

[11]  B. R. Noack,et al.  Fast Approximated POD for a Flat Plate Benchmark with a Time Varying Angle of Attack , 2008 .

[12]  Roi Gurka,et al.  POD of vorticity fields: A method for spatial characterization of coherent structures , 2006 .

[13]  P. Wriggers,et al.  Reduction Methods for FE Analysis in Nonlinear Structural Dynamics , 2005 .

[14]  Philip S. Beran,et al.  Applications of multi-POD to a pitching and plunging airfoil , 2005, Math. Comput. Model..

[15]  P. Wriggers,et al.  A fully nonlinear multi-parameter shell model with thickness variation and a triangular shell finite element , 2004 .

[16]  Peter Wriggers,et al.  A triangular finite shell element based on a fully nonlinear shell formulation , 2003 .

[17]  Paul I. King,et al.  POD-Based reduced-order models with deforming grids , 2003 .

[18]  G. Kerschen,et al.  PHYSICAL INTERPRETATION OF THE PROPER ORTHOGONAL MODES USING THE SINGULAR VALUE DECOMPOSITION , 2002 .

[19]  J. Marsden,et al.  Dimensional model reduction in non‐linear finite element dynamics of solids and structures , 2001 .

[20]  P. Sagaut,et al.  Towards an adaptive POD/SVD surrogate model for aeronautic design , 2011 .

[21]  Charbel Farhat,et al.  An Adaptive POD-Krylov Reduced-Order Model for Structural Optimization , 2009 .

[22]  D. Ryckelynck,et al.  A priori hyperreduction method: an adaptive approach , 2005 .

[23]  O. Widlund,et al.  On a selective reuse of Krylov subspaces in Newton-Krylov approaches for nonlinear elasticity , 2003 .

[24]  Gaëtan Kerschen,et al.  PROPER ORTHOGONAL DECOMPOSITION FOR MODEL UPDATING OF NON-LINEAR MECHANICAL SYSTEMS , 2001 .

[25]  (www.interscience.wiley.com) DOI: 10.1002/qj.96 Adaptive ensemble reduction and inflation , 2022 .