Stopping criteria for iterations in finite element methods

Summary.This work extends the results of Arioli [1], [2] on stopping criteria for iterative solution methods for linear finite element problems to the case of nonsymmetric positive-definite problems. We show that the residual measured in the norm induced by the symmetric part of the inverse of the system matrix is relevant to convergence in a finite element context. We then use Krylov solvers to provide alternative ways of calculating or estimating this quantity and present numerical experiments which validate our criteria.

[1]  J. L. Rigal,et al.  On the Compatibility of a Given Solution With the Data of a Linear System , 1967, JACM.

[2]  I. Babuska Error-bounds for finite element method , 1971 .

[3]  G. Strang VARIATIONAL CRIMES IN THE FINITE ELEMENT METHOD , 1972 .

[4]  H. Schönheinz G. Strang / G. J. Fix, An Analysis of the Finite Element Method. (Series in Automatic Computation. XIV + 306 S. m. Fig. Englewood Clifs, N. J. 1973. Prentice‐Hall, Inc. , 1975 .

[5]  O. Widlund A Lanczos Method for a Class of Nonsymmetric Systems of Linear Equations , 1978 .

[6]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[7]  F. Brezzi,et al.  A discourse on the stability conditions for mixed finite element formulations , 1990 .

[8]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[9]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[10]  P. Deuflhard Cascadic conjugate gradient methods for elliptic partial differential equations , 1993 .

[11]  P. Deuflhard,et al.  The cascadic multigrid method for elliptic problems , 1996 .

[12]  G. Starke Field-of-values analysis of preconditioned iterative methods for nonsymmetric elliptic problems , 1997 .

[13]  G. Golub,et al.  Matrices, moments and quadrature II; How to compute the norm of the error in iterative methods , 1997 .

[14]  M. Arioli,et al.  Stopping criteria for iterative methods:¶applications to PDE's , 2001 .

[15]  Z. Strakos,et al.  On error estimation in the conjugate gradient method and why it works in finite precision computations. , 2002 .

[16]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[17]  Gérard Meurant,et al.  Numerical experiments in computing bounds for the norm of the error in the preconditioned conjugate gradient algorithm , 1999, Numerical Algorithms.

[18]  M. Arioli,et al.  A stopping criterion for the conjugate gradient algorithm in a finite element method framework , 2000, Numerische Mathematik.

[19]  Andrew J. Wathen,et al.  Analysis of Preconditioners for Saddle-Point Problems , 2004, SIAM J. Sci. Comput..

[20]  Gene H. Golub,et al.  Estimates in quadratic formulas , 1994, Numerical Algorithms.

[21]  Gene H. Golub,et al.  A generalized conjugate gradient method for non-symmetric systems of linear equations , 2007, Milestones in Matrix Computation.