A six sigma based multi-objective optimization for machine grouping control in flexible cellular manufacturing systems with guide-path flexibility

[1]  N. Rudraiah,et al.  A singular perturbation problem of non-newtonian flow between porous disks , 1974 .

[2]  David H. Evans,et al.  Statistical Tolerancing: The State of the Art, Part III. Shifts and Drifts , 1975 .

[3]  D. Hearn,et al.  On Stopping Rules for Facilities Location Algorithms , 1983 .

[4]  Victor E. Kane,et al.  Process Capability Indices , 1986 .

[5]  J. M. A. Tanchoco,et al.  Flow path design for automated guided vehicle systems , 1987 .

[6]  J. M. A. Tanchoco,et al.  Virtual flow paths for free-ranging automated guided vehicle systems , 1989 .

[7]  M. A. Venkataramanan,et al.  A branch‐and‐bound algorithm for flow‐path design of automated guided vehicle systems , 1991 .

[8]  Yavuz A. Bozer,et al.  Tandem Configurations for Automated Guided Vehicle Systems and the Analysis of Single Vehicle Loops , 1991 .

[9]  Timothy J. Lowe,et al.  Flow network design for manufacturing systems layout , 1992 .

[10]  James T. Lin,et al.  A load-routeing problem in a tandem-configuration automated guided-vehicle system , 1994 .

[11]  P. Banerjee,et al.  Facilities layout design optimization with single loop material flow path configuration , 1995 .

[12]  Diane P. Bischak,et al.  An evaluation of the tandem configuration automated guided vehicle system , 1995 .

[13]  J. M. A. Tanchoco,et al.  An introduction to the segmented flow approach for discrete material flow systems , 1995 .

[14]  Pius J. Egbelu,et al.  Flexible guidepath design for automated guided vehicle systems , 1995 .

[15]  Gilbert Laporte,et al.  Some Applications of the Generalized Travelling Salesman Problem , 1996 .

[16]  N. Tchernev,et al.  Impact of empty vehicle flow on optimal flow path design for unidirectional AGV systems , 1996 .

[17]  Farzad Mahmoodi,et al.  Tandem Configuration Automated Guided Vehicle Systems: A Comparative Study* , 1996 .

[18]  J. Tanchoco,et al.  Design procedures and implementation of the segmented flow topology (SFT) for discrete material flow systems , 1997 .

[19]  Miryam Barad,et al.  A PETRI NET MODEL FOR THE OPERATIONAL DESIGN AND ANALYSIS OF SEGMENTED FLOW TOPOLOGY (SFT) AGV SYSTEMS , 1998 .

[20]  G. Laporte,et al.  The block layout shortest loop design problem , 2000 .

[21]  Spyros A. Reveliotis Conflict resolution in AGV systems , 2000 .

[22]  Brett A. Peters,et al.  Modeling and analysis of tandem AGV systems using generalized stochastic Petri nets , 2001 .

[23]  Pius J. Egbelu,et al.  Design of a variable path tandem layout for automated guided vehicle systems , 2001 .

[24]  Jose A. Ventura,et al.  A study of the tandem loop with multiple vehicles configuration for automated guided vehicle systems , 2001 .

[25]  Chelliah Sriskandarajah,et al.  A Loop Material Flow System Design for Automated Guided Vehicles , 2001 .

[26]  F Ghasemitari,et al.  A BRANCH-AND-BOUND METHOD FOR FINDING FLOW-PATH DESIGNING OF AGV SYSTEMS , 2002 .

[27]  J. M. A. Tanchoco,et al.  Optimal solution for the flow path design problem of a balanced unidirectional AGV system , 2002 .

[28]  Moosung Jae,et al.  An object-oriented simulation and extension for tandem AGV systems , 2003 .

[29]  Moosung Jae,et al.  A design for a tandem AGVS with multi-load AGVs , 2003 .

[30]  R. Zanjirani Farahani,et al.  A practical exact algorithm for the shortest loop design problem in a block layout , 2003 .

[31]  Pius J. Egbelu,et al.  Unidirectional AGV guidepath network design: A heuristic algorithm , 2003 .

[32]  Yavuz A. Bozer,et al.  Using existing workstations as transfer stations in tandem AGV systems , 2004 .

[33]  Ying-Chin Ho *,et al.  A machine-to-loop assignment and layout design methodology for tandem AGV systems with multiple-load vehicles , 2004 .

[34]  Shehroz S. Khan,et al.  Cluster center initialization algorithm for K-means clustering , 2004, Pattern Recognit. Lett..

[35]  Sunderesh S. Heragu,et al.  A Lagrangian relaxation approach to solving the integrated pick-up/drop-off point and AGV flowpath design problem , 2004 .

[36]  Gilbert Laporte,et al.  Loop based facility planning and material handling , 2002, Eur. J. Oper. Res..

[37]  M. A. Shalaby,et al.  Zones formation algorithm in tandem AGV systems:a comparative study , 2006 .

[38]  Gilbert Laporte,et al.  Designing an efficient method for tandem AGV network design problem using tabu search , 2006, Appl. Math. Comput..

[39]  Iris F. A. Vis,et al.  Survey of research in the design and control of automated guided vehicle systems , 2006, Eur. J. Oper. Res..

[40]  R. Tavakkoli-Moghaddam,et al.  Partitioning machines in tandem AGV systems based on “balanced flow strategy” by simulated annealing , 2008 .

[41]  Damien Trentesaux,et al.  A stigmergic approach for dynamic routing of active products in FMS , 2009, Comput. Ind..

[42]  Tauseef Aized,et al.  Modelling and performance maximization of an integrated automated guided vehicle system using coloured Petri net and response surface methods , 2009, Comput. Ind. Eng..