Zinc-binding to the cytoplasmic PAS domain regulates the essential WalK histidine kinase of Staphylococcus aureus

[1]  Robin Patel,et al.  Global spread of three multidrug-resistant lineages of Staphylococcus epidermidis , 2018, Nature Microbiology.

[2]  F. Jacob-Dubuisson,et al.  Structural insights into the signalling mechanisms of two-component systems , 2018, Nature Reviews Microbiology.

[3]  Sarah Dubrac,et al.  SpdC, a novel virulence factor, controls histidine kinase activity in Staphylococcus aureus , 2018, PLoS pathogens.

[4]  M. Martí,et al.  Sensory deprivation in Staphylococcus aureus , 2018, Nature Communications.

[5]  X. Rao,et al.  Molecular Events for Promotion of Vancomycin Resistance in Vancomycin Intermediate Staphylococcus aureus , 2016, Front. Microbiol..

[6]  A. Peleg,et al.  Vancomycin susceptibility in methicillin-resistant Staphylococcus aureus is mediated by YycHI activation of the WalRK essential two-component regulatory system , 2016, Scientific Reports.

[7]  Jongkeun Choi,et al.  Structural Studies on the Extracellular Domain of Sensor Histidine Kinase YycG from Staphylococcus aureus and Its Functional Implications. , 2016, Journal of molecular biology.

[8]  T. Seemann,et al.  Refutation: Structure and mechanism of the essential two-component signal-transduction system WalKR in Staphylococcus aureus. , 2016 .

[9]  Sarah Dubrac,et al.  Transcriptional Analysis and Subcellular Protein Localization Reveal Specific Features of the Essential WalKR System in Staphylococcus aureus , 2016, PloS one.

[10]  T. Foster,et al.  Erratum for Monk et al., Complete Bypass of Restriction Systems for Major Staphylococcus aureus Lineages , 2016, mBio.

[11]  J. Dworkin,et al.  The Eukaryotic-Like Ser/Thr Kinase PrkC Regulates the Essential WalRK Two-Component System in Bacillus subtilis , 2015, PLoS genetics.

[12]  Vance G. Fowler,et al.  Staphylococcus aureus Infections: Epidemiology, Pathophysiology, Clinical Manifestations, and Management , 2015, Clinical Microbiology Reviews.

[13]  Timothy K Lee,et al.  Mechanical crack propagation drives millisecond daughter cell separation in Staphylococcus aureus , 2015, Science.

[14]  R. Couñago,et al.  Dysregulation of transition metal ion homeostasis is the molecular basis for cadmium toxicity in Streptococcus pneumoniae , 2015, Nature Communications.

[15]  A. Marina,et al.  Bacterial histidine kinases as novel antibacterial drug targets. , 2015, ACS chemical biology.

[16]  Xiaoyu Liu,et al.  Mechanism of Reduced Vancomycin Susceptibility Conferred by walK Mutation in Community-Acquired Methicillin-Resistant Staphylococcus aureus Strain MW2 , 2014, Antimicrobial Agents and Chemotherapy.

[17]  Janne Jänis,et al.  Zinc coordination spheres in protein structures. , 2013, Inorganic chemistry.

[18]  Philip R. Evans,et al.  How good are my data and what is the resolution? , 2013, Acta crystallographica. Section D, Biological crystallography.

[19]  Xiaozheng Xu,et al.  Mechanistic Insights Revealed by the Crystal Structure of a Histidine Kinase with Signal Transducer and Sensor Domains , 2013, PLoS biology.

[20]  P. Fey,et al.  Genetic Tools To Enhance the Study of Gene Function and Regulation in Staphylococcus aureus , 2013, Applied and Environmental Microbiology.

[21]  P. Fey,et al.  Contribution of the Staphylococcus aureus Atl AM and GL Murein Hydrolase Activities in Cell Division, Autolysis, and Biofilm Formation , 2012, PloS one.

[22]  Sarah Dubrac,et al.  The WalKR System Controls Major Staphylococcal Virulence Genes and Is Involved in Triggering the Host Inflammatory Response , 2012, Infection and Immunity.

[23]  Min Xu,et al.  Transforming the Untransformable: Application of Direct Transformation To Manipulate Genetically Staphylococcus aureus and Staphylococcus epidermidis , 2012, mBio.

[24]  W. Edelmann,et al.  SLiCE: a novel bacterial cell extract-based DNA cloning method , 2012, Nucleic acids research.

[25]  Peter J. Stuckey,et al.  Automatic generation of protein structure cartoons with Pro-origami , 2011, Bioinform..

[26]  C. Wolz,et al.  Vectors for improved Tet repressor-dependent gradual gene induction or silencing in Staphylococcus aureus. , 2011, Microbiology.

[27]  Torsten Seemann,et al.  Evolution of Multidrug Resistance during Staphylococcus aureus Infection Involves Mutation of the Essential Two Component Regulator WalKR , 2011, PLoS pathogens.

[28]  S. Crosson,et al.  Ligand-binding PAS domains in a genomic, cellular, and structural context. , 2011, Annual review of microbiology.

[29]  J. Turnidge,et al.  Antibiotic choice may not explain poorer outcomes in patients with Staphylococcus aureus bacteremia and high vancomycin minimum inhibitory concentrations. , 2011, The Journal of infectious diseases.

[30]  L. Cui,et al.  walK and clpP Mutations Confer Reduced Vancomycin Susceptibility in Staphylococcus aureus , 2011, Antimicrobial Agents and Chemotherapy.

[31]  P. Ward,et al.  Daptomycin non-susceptibility in vancomycin-intermediate Staphylococcus aureus (VISA) and heterogeneous-VISA (hVISA): implications for therapy after vancomycin treatment failure. , 2011, The Journal of antimicrobial chemotherapy.

[32]  Philip R. Evans,et al.  An introduction to data reduction: space-group determination, scaling and intensity statistics , 2011, Acta crystallographica. Section D, Biological crystallography.

[33]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[34]  Sarah Dubrac,et al.  Peptidoglycan Crosslinking Relaxation Plays an Important Role in Staphylococcus aureus WalKR-Dependent Cell Viability , 2011, PloS one.

[35]  H. Szurmant,et al.  A role for the essential YycG sensor histidine kinase in sensing cell division , 2011, Molecular microbiology.

[36]  A. Nordheim,et al.  Staphylococcal Major Autolysin (Atl) Is Involved in Excretion of Cytoplasmic Proteins* , 2010, The Journal of Biological Chemistry.

[37]  Paul D. R. Johnson,et al.  Reduced Vancomycin Susceptibility in Staphylococcus aureus, Including Vancomycin-Intermediate and Heterogeneous Vancomycin-Intermediate Strains: Resistance Mechanisms, Laboratory Detection, and Clinical Implications , 2010, Clinical Microbiology Reviews.

[38]  B. Howden,et al.  Treating Gram-positive infections: vancomycin update and the whys, wherefores and evidence base for continuous infusion of anti-Gram-positive antibiotics , 2009, Current opinion in infectious diseases.

[39]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[40]  G. Unden,et al.  A PAS domain with an oxygen labile [4Fe-4S](2+) cluster in the oxygen sensor kinase NreB of Staphylococcus carnosus. , 2008, Biochemistry.

[41]  K. Devine,et al.  A matter of life and death: cell wall homeostasis and the WalKR (YycGF) essential signal transduction pathway , 2008, Molecular microbiology.

[42]  D. Allen,et al.  Genomic Analysis Reveals a Point Mutation in the Two-Component Sensor Gene graS That Leads to Intermediate Vancomycin Resistance in Clinical Staphylococcus aureus , 2008, Antimicrobial Agents and Chemotherapy.

[43]  C. Waldburger,et al.  Crystal Structure of a Functional Dimer of the PhoQ Sensor Domain , 2008, Journal of Biological Chemistry.

[44]  H. Yuzawa,et al.  Mutated Response Regulator graR Is Responsible for Phenotypic Conversion of Staphylococcus aureus from Heterogeneous Vancomycin-Intermediate Resistance to Vancomycin-Intermediate Resistance , 2007, Antimicrobial Agents and Chemotherapy.

[45]  Sarah Dubrac,et al.  New Insights into the WalK/WalR (YycG/YycF) Essential Signal Transduction Pathway Reveal a Major Role in Controlling Cell Wall Metabolism and Biofilm Formation in Staphylococcus aureus , 2007, Journal of bacteriology.

[46]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[47]  K. Devine,et al.  The essential YycFG two‐component system controls cell wall metabolism in Bacillus subtilis , 2007, Molecular microbiology.

[48]  Alexander Tomasz,et al.  Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing , 2007, Proceedings of the National Academy of Sciences.

[49]  H. Szurmant,et al.  YycH and YycI Interact To Regulate the Essential YycFG Two-Component System in Bacillus subtilis , 2007, Journal of bacteriology.

[50]  D. Missiakas,et al.  Staphylococcus aureus Mutants with Increased Lysostaphin Resistance , 2006, Journal of bacteriology.

[51]  R. Dixon,et al.  Role of the central region of NifL in conformational switches that regulate nitrogen fixation. , 2006, Biochemical Society transactions.

[52]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[53]  L. Hancock,et al.  Systematic Inactivation and Phenotypic Characterization of Two-Component Signal Transduction Systems of Enterococcus faecalis V583 , 2004, Journal of bacteriology.

[54]  P. Bremer,et al.  Morphotypic Conversion in Listeria monocytogenes Biofilm Formation: Biological Significance of Rough Colony Isolates , 2004, Applied and Environmental Microbiology.

[55]  Sarah Dubrac,et al.  Identification of Genes Controlled by the Essential YycG/YycF Two-Component System of Staphylococcus aureus , 2004, Journal of bacteriology.

[56]  K. K. Andersen,et al.  Genes controlled by the essential YycG/YycF two‐component system of Bacillus subtilis revealed through a novel hybrid regulator approach , 2003, Molecular microbiology.

[57]  B. Kallipolitis,et al.  Listeria monocytogenes response regulators important for stress tolerance and pathogenesis. , 2001, FEMS microbiology letters.

[58]  Nathan A. Baker,et al.  Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[59]  J. Echenique,et al.  Competence Repression under Oxygen Limitation through the Two-Component MicAB Signal-Transducing System inStreptococcus pneumoniae and Involvement of the PAS Domain of MicB , 2001, Journal of bacteriology.

[60]  K. Kobayashi,et al.  The essential two-component regulatory system encoded by yycF and yycG modulates expression of the ftsAZ operon in Bacillus subtilis. , 2000, Microbiology.

[61]  Dongxu Sun,et al.  Role in Cell Permeability of an Essential Two-Component System in Staphylococcus aureus , 1999, Journal of bacteriology.

[62]  M. Gilles-Gonzalez,et al.  Structure of a biological oxygen sensor: a new mechanism for heme-driven signal transduction. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[63]  J. Hoch,et al.  A Two-Component Signal Transduction System Essential for Growth of Bacillus subtilis: Implications for Anti-Infective Therapy , 1998, Journal of bacteriology.

[64]  H. Sahl,et al.  The cell wall precursor lipid II acts as a molecular signal for the Ser/Thr kinase PknB of Staphylococcus aureus. , 2017, International journal of medical microbiology : IJMM.

[65]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[66]  Vincent B. Chen,et al.  Acta Crystallographica Section D Biological , 2001 .