Integral of Real-Valued Measurable Function1

Integral of Real-Valued Measurable Function1 Based on [16], authors formalized the integral of an extended real valued measurable function in [12] before. However, the integral argued in [12] cannot be applied to real-valued functions unconditionally. Therefore, in this article we have formalized the integral of a real-value function.

[1]  A. Kondracki Basic Properties of Rational Numbers , 1990 .

[2]  Czeslaw Bylinski Functions from a Set to a Set , 2004 .

[3]  A. Trybulec Domains and Their Cartesian Products , 1990 .

[4]  Krzysztof Hryniewiecki,et al.  Basic Properties of Real Numbers , 2004 .

[5]  Józef Białas Some Properties of the Intervals , 2004 .

[6]  Jaross Law Kotowicz Real Sequences and Basic Operations on Them , 1989 .

[7]  W. Kellaway,et al.  Complex Numbers , 2019, AMS/MAA Textbooks.

[8]  Noboru Endou The Measurability of Extended Real Valued Functions , 2000 .

[9]  Katsumi Wasaki,et al.  Riemann Indefinite Integral of Functions of Real Variable , 2007 .

[10]  J. Harrison Formalized Mathematics , 1996 .

[11]  Yuji Sakai,et al.  Properties of Partial Functions from a Domain to the Set of Real Numbers , 1992 .

[12]  G. Bancerek,et al.  Ordinal Numbers , 2003 .

[13]  Grzegorz Bancerek,et al.  Segments of Natural Numbers and Finite Sequences , 1990 .

[14]  Czeslaw Bylinski Functions and Their Basic Properties , 2004 .

[15]  Józef Białas Infimum and Supremum of the Set of Real Numbers. Measure Theory , 1990 .

[16]  Noboru Endou Definitions and Basic Properties of Measurable Functions , 2004 .

[17]  Andrzej Ne ' dzusiak Fields and Probability , 1990 .

[18]  Beata Padlewska,et al.  Families of Sets , 1990 .

[19]  A. Trybulec Tarski Grothendieck Set Theory , 1990 .

[20]  J. K. Hunter,et al.  Measure Theory , 2007 .

[21]  Artur Korni,et al.  Some Basic Properties of Many Sorted Sets , 1996 .

[22]  Edmund Woronowicz Relations Defined on Sets , 1990 .

[23]  Józef Bia las The σ-additive Measure Theory , 1990 .

[24]  Yasunari Shidama,et al.  Integral of Measurable Function1 , 2006 .

[25]  Józef Bia Series of Positive Real Numbers . Measure Theory , 1990 .