Path category for free - Open morphisms from coalgebras with non-deterministic branching

There are different categorical approaches to variations of transition systems and their bisimulations. One is coalgebra for a functor G, where a bisimulation is defined as a span of G-coalgebra homomorphism. Another one is in terms of path categories and open morphisms, where a bisimulation is defined as a span of open morphisms. This similarity is no coincidence: given a functor G, fulfilling certain conditions, we derive a path-category for pointed G-coalgebras and lax homomorphisms, such that the open morphisms turn out to be precisely the G-coalgebra homomorphisms. The above construction provides path-categories and trace semantics for free for different flavours of transition systems: (1) non-deterministic tree automata (2) regular nondeterministic nominal automata (RNNA), an expressive automata notion living in nominal sets (3) multisorted transition systems. This last instance relates to Lasota’s construction, which is in the converse direction.

[1]  J. Stuart PROCEEDINGS - PART II , 1993 .

[2]  Andrew M. Pitts,et al.  A new approach to abstract syntax involving binders , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[3]  Hubert Comon,et al.  Tree automata techniques and applications , 1997 .

[4]  Glynn Winskel,et al.  Weak bisimulation and open maps , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[5]  Alexandra Silva,et al.  Nominal Kleene Coalgebra , 2015, ICALP.

[6]  Stefan Milius,et al.  Generic Trace Semantics and Graded Monads , 2015, CALCO.

[7]  Axel Legay,et al.  History-Preserving Bisimilarity for Higher-Dimensional Automata via Open Maps , 2013, MFPS.

[8]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[9]  Glynn Winskel,et al.  Bisimulation from Open Maps , 1994, Inf. Comput..

[10]  A. Joyal Foncteurs analytiques et espèces de structures , 1986 .

[11]  Stefan Milius,et al.  Nominal Automata with Name Binding , 2017, FoSSaCS.

[12]  Slawomir Lasota Coalgebra morphisms subsume open maps , 1999, CMCS.

[13]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[14]  A. Joyal Une théorie combinatoire des séries formelles , 1981 .

[15]  Stefan Milius,et al.  Regular Behaviours with Names , 2016, Appl. Categorical Struct..

[16]  Ana Sokolova,et al.  Traces, Executions and Schedulers, Coalgebraically , 2009, CALCO.

[17]  Alexander Katovsky,et al.  Category Theory , 2010, Arch. Formal Proofs.

[18]  Alexander Kurz,et al.  Algebraic Theories over Nominal Sets , 2010, ArXiv.

[19]  Jirí Adámek,et al.  Well-Pointed Coalgebras , 2013, Log. Methods Comput. Sci..

[20]  Stefan Milius A Sound and Complete Calculus for Finite Stream Circuits , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[21]  Andrew M. Pitts,et al.  Nominal Sets: Names and Symmetry in Computer Science , 2013 .

[22]  Mogens Nielsen,et al.  Bisimulation and Open Maps for Timed Transition Systems , 1999, Fundam. Informaticae.

[23]  Jean Goubault-Larrecq,et al.  Natural Homology , 2015, ICALP.

[24]  Helle Hvid Hansen,et al.  Pointwise extensions of GSOS-defined operations , 2011, Math. Struct. Comput. Sci..

[25]  Paula Severi,et al.  Nominal Coalgebraic Data Types with Applications to Lambda Calculus , 2013, Log. Methods Comput. Sci..

[26]  Ana Sokolova,et al.  Generic Trace Semantics via Coinduction , 2007, Log. Methods Comput. Sci..

[27]  Harsh Beohar,et al.  On path-based coalgebras and weak notions of bisimulation , 2017, CALCO.

[28]  Alexandra Silva,et al.  The Power of Convex Algebras , 2017, CONCUR.

[29]  Jirí Adámek,et al.  Abstract and Concrete Categories - The Joy of Cats , 1990 .