Segmentation of nonrigid object in a nonparametric MAP framework

This paper presents an efficient segmentation approach for nonrigid video object. We propose to formulate the video object segmentation problem as the maximum a posteriori probability (MAP) problem and define the probabilistic models in terms of the object's density function. Furthermore, in order to accurately represent the density function for video object with arbitrary shape and complex texture, we employ a nonparametric method to estimate the density function. Our proposed density estimation mostly relies on the object's color features and requires no time-consuming motion estimation. In addition, we further employ an efficient mean-shift procedure in the MAP optimization step to largely reduce the computational cost. Our experiments demonstrate that the segmentation results are very promising even when the video objects are severely deformed or occluded.

[1]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Michael G. Strintzis,et al.  Spatiotemporal segmentation and tracking of objects for visualization of videoconference image sequences , 2000, IEEE Trans. Circuits Syst. Video Technol..

[3]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  King Ngi Ngan,et al.  Video segmentation for content-based coding , 1999, IEEE Trans. Circuits Syst. Video Technol..

[5]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Amitabha Das,et al.  Estimation of Occlusion and Dense Motion Fields in a Bidirectional Bayesian Framework , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Yongmin Kim,et al.  Video object tracking with a sequential hierarchy of template deformations , 2001, IEEE Trans. Circuits Syst. Video Technol..

[8]  King Ngi Ngan,et al.  Automatic segmentation of moving objects for video object plane generation , 1998, IEEE Trans. Circuits Syst. Video Technol..

[9]  Yo-Sung Ho,et al.  A VOP generation tool: automatic segmentation of moving objects in image sequences based on spatio-temporal information , 1999, IEEE Trans. Circuits Syst. Video Technol..

[10]  A. Murat Tekalp,et al.  Tracking visible boundary of objects using occlusion adaptive motion snake , 2000, IEEE Trans. Image Process..

[11]  A. Murat Tekalp,et al.  Digital Video Processing , 1995 .