Discharge plasma processes of ring-cusp ion thrusters

This study has increased the viability of miniature ion thruster technology, advanced state-of-the-art discharge modeling, and revealed important aspects of discharge plasma processes. These extensions of existing ion thruster technology and understanding are necessary to fulfill the needs of future space missions. Experimental comparisons of the discharge performance of an array of miniature (3cm diameter) ion thruster discharge configurations were conducted and showed that a 3-ring configuration with length-to-diameter of 1.0 exhibited the best performance. A compact and lightweight version of this configuration, using small accelerator grid holes, exhibited discharge losses of 250-550eV/ion and propellant efficiency of as much as 87%. This performance represents a significant advancement in miniature (less than 5cm diameter) ion thruster technology and demonstrates that a miniature ion thruster of low magnet and thruster weight can yield desirable performance. A multi-component hybrid 2-D computational Discharge Model was developed to help identify important ion thruster discharge processes and investigate miniaturization issues. Combining experimental and computational results reveals that magnetic field optimization for a miniature ion thruster is bracketed by considerations of primary electron utilization and discharge stability. Discharge Model analysis of the larger (30cm diameter) NSTAR thruster revealed that the peak observed in the NSTAR beam profile is due to double ions that are created by over-confinement of primary electrons on the thruster axis. Design sensitivity results show that, at the NSTAR thruster scale, efficient confinement of primary electrons is relatively easy to achieve; therefore, efforts to improve thruster performance should focus on effectively utilizing the primary electrons to minimize double ion production and maximize the number of single ions extracted to the beam. The observations from this study have furthered the understanding of discharge processes and should improve future ion thruster design and modeling efforts. The Discharge Model advances state-of-the-art ion thruster modeling and provides a framework for a complete thruster model that can be used for long-life performance assessment and life validation.

[1]  R. K. Wakerling,et al.  The characteristics of electrical discharges in magnetic fields , 1949 .

[2]  L. Spitzer Physics of fully ionized gases , 1956 .

[3]  G. Medicus Theory of Electron Collection of Spherical Probes , 1961 .

[4]  Paul D. Reader Scale Effects on Ion Rocket Performance , 1962 .

[5]  S. I. Braginskii Transport Processes in a Plasma , 1965 .

[6]  D. Rapp,et al.  Total Cross Sections for Ionization and Attachment in Gases by Electron Impact. I. Positive Ionization , 1965 .

[7]  T. Teichmann,et al.  Introduction to physical gas dynamics , 1965 .

[8]  F. Boeschoten Plasma diffusion and rotation in a conducting container of finite length in the presence of a longitudinal magnetic field , 1967 .

[9]  W. Knauer,et al.  Discharge chamber studies for mercury bombardment ion thrusters Semiannual report , 1968 .

[10]  S. Schweitzer,et al.  Electrical Conductivity of a Partially Ionized Gas in a Magnetic Field , 1967 .

[11]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[12]  P. Clausing,et al.  The Flow of Highly Rarefied Gases through Tubes of Arbitrary Length , 1971 .

[13]  R. Poeschel,et al.  The radial magnetic field geometry as an approach to total ion utilization in Kaufman thrusters , 1972 .

[14]  M. Mitchner,et al.  Partially ionized gases , 1973 .

[15]  H. Kaufman Technology of Electron-Bombardment Ion Thrusters , 1975 .

[16]  Paul J. Wilbur,et al.  Cusped magnetic field mercury ion thruster , 1976 .

[17]  Noah Hershkowitz,et al.  Plasma confinement by localized cusps , 1976 .

[18]  L. T. Specht,et al.  Electron ionization and excitation coefficients for argon, krypton, and xenon in the low E/N region , 1980 .

[19]  Dan M. Goebel,et al.  Ion source discharge performance and stability , 1982 .

[20]  C. Koch,et al.  Collisional diffusion of a plasma in multipolar and picket fence devices , 1983 .

[21]  R. L. Poeschel,et al.  Ring-cusp ion thrusters , 1984 .

[22]  W. Dorland,et al.  Plasma Physics and Controlled Fusion , 1984 .

[23]  J. R. Brophy,et al.  Ion thruster performance model , 1984 .

[24]  Paul J. Wilbur,et al.  Ring cusp/hollow cathode discharge chamber performance studies. [ion propulsion] , 1988 .

[25]  J. McKillop,et al.  Doppler profile measurement of Ar and Ar+ translational energies in a divergent magnetic field electron cyclotron resonance source , 1989 .

[26]  Y. Hayakawa,et al.  Measurements of electron energy distributions in a 14 cm diameter ring cusp ion thruster , 1989 .

[27]  Yoshihiro Arakawa,et al.  Monte Carlo simulation of primary electron motions in cusped discharge chambers , 1990 .

[28]  J. R. Beattie,et al.  Characteristics of ring-cusp discharge chambers , 1991 .

[29]  N. Hershkowitz,et al.  Mechanical variation of plasma potential, electron temperature and plasma density , 1992 .

[30]  Bell,et al.  Electron-impact ionization of In+ and Xe+ , 1993, Physical review. A, Atomic, molecular, and optical physics.

[31]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing , 1994 .

[32]  G. Sandonato,et al.  Magnetic confinement studies for performance enhancement of a 5-cm ion thruster , 1996 .

[33]  Eric C. Benck,et al.  Langmuir Probe Measurements in an Inductively Coupled Plasma Source , 1997 .

[34]  Y. Hayakawa,et al.  Ion beamlet divergence characteristics of two-grid multiple-hole ion-accelerator systems , 1997 .

[35]  Michael J. Patterson Low-Power Ion Thruster Development Status , 1998 .

[36]  Paul J. Wilbur,et al.  Ion Thruster Development Trends and Status in the United States , 1998 .

[37]  John Michael Fife,et al.  Hybrid-PIC modeling and electrostatic probe survey of Hall thrusters , 1998 .

[38]  Gregory Yashko Ion micro-propulsion and cost modeling for satellite clusters , 1998 .

[39]  T. A. Bond,et al.  NSTAR Ion Thrusters and Power Processors , 1999 .

[40]  John R. Anderson,et al.  An overview of the results from an 8200 hour wear test of the NSTAR ion thruster , 1999 .

[41]  Michael J. Patterson,et al.  Enhanced Discharge Performance in a Ring Cusp Plasma Source , 2000 .

[42]  James E. Polk,et al.  Performance of Field Emission Cathodes in Xenon Electric Propulsion System Environments , 2000 .

[43]  O. A. Gorshkov,et al.  Development of the Low-Power Xenon Ion Thruster for Lightweight Satellites , 2000 .

[44]  M. Patterson,et al.  Hollow Cathode Micro-Thruster Performance , 2001 .

[45]  Michael J. Patterson,et al.  Ion Propulsion Development Projects in US: Space Electric Rocket Test I to Deep Space 1 , 2001 .

[46]  James E. Polk,et al.  Numerical simulations of ion thruster accelerator grid erosion , 2002 .

[47]  James E. Polk,et al.  Field emission array cathode material selection for compatibility with electric propulsion applications , 2002 .

[48]  D. Levandier,et al.  Xenon charge exchange cross sections for electrostatic thruster models , 2002 .

[49]  James Menart,et al.  PRIMARY ELECTRON MODELING IN THE DISCHARGE CHAMBER OF AN ION ENGINE , 2002 .

[50]  Eui-Hyeok Yang,et al.  AN OVERVIEW OF MEMS-BASED MICROPROPULSION DEVELOPMENTS AT JPL , 2003 .

[51]  R. Wirz,et al.  A Preliminary 2-D Computational Model of an Ion Thruster Discharge Chamber , 2003 .

[52]  I. Mikellides,et al.  Model of a Hollow Cathode Insert Plasma , 2004 .

[53]  Dan M. Goebel,et al.  Numerical simulation of two-grid ion optics using a 3D code , 2004 .

[54]  James Menart,et al.  Computational Study of Primary Electrons in the Cusp Region of an Ion Engine's Discharge Chamber , 2004 .

[55]  A. Gallimore,et al.  Near Discharge Cathode Assembly Plasma Potential Measurements in a 30-cm NSTAR-Type Ion Engine During Beam Extraction , 2004 .

[56]  R. Wirz,et al.  2-D Discharge Chamber Model for Ion Thrusters , 2004 .

[57]  I. Katz,et al.  Hollow Cathode and Keeper-region Plasma Measurements Using Ultra-fast Miniature Scanning Probes , 2004 .

[58]  S. Oleson Electric Propulsion Technology Development for the Jupiter Icy Moons Orbiter Project , 2004 .

[59]  Sven G. Bilen,et al.  Development and Chamber Testing of a Miniature Radio- Frequency Ion Thruster for Microspacecraft , 2004 .

[60]  John R. Brophy,et al.  Performance Characterization and Vibration Testing of 30-cm Carbon-Carbon Ion Optics , 2004 .

[61]  Sang-Wook Kim,et al.  Endurance Test of Microwave Engine , 2006 .