The Kinetic Facility Location Problem

We present a deterministic kinetic data structure for the facility location problem that maintains a subset of the moving points as facilities such that, at any point of time, the accumulated cost for the whole point set is at most a constant factor larger than the optimal cost. Each point can change its status between client and facility and moves continuously along a known trajectory in a d-dimensional Euclidean space, where dis a constant. Our kinetic data structure requires $\mathcal{O}(n (\log^{d}(n)+\log(nR)))$ space, where $R:=\frac{\max_{p_i \in \mathcal{P}}{f_i} \,\cdot\, \max_{p_i\in \mathcal{P}}{d_i}}{\min_{p_i \in \mathcal{P}}{f_i} \,\cdot\, \min_{p_i\in \mathcal{P}}{d_i}}$, $\mathcal{P} = \{ p_1, p_2, \ldots , p_n \}$ is the set of given points, and f i , d i are the maintenance cost and the demand of a point p i , respectively. In case that each trajectory can be described by a bounded degree polynomial, we process $\mathcal{O}(n^2 \log^2(nR))$ events, each requiring $\mathcal{O}(\log^{d+1}(n) \cdot \log(nR))$ time and $\mathcal{O}(\log(nR))$ status changes. To the best of our knowledge, this is the first kinetic data structure for the facility location problem.

[1]  Sariel Har-Peled Clustering Motion , 2004, Discret. Comput. Geom..

[2]  John Hershberger Smooth kinetic maintenance of clusters , 2005, Comput. Geom..

[3]  Roger Wattenhofer,et al.  Facility location: distributed approximation , 2005, PODC '05.

[4]  Vijay V. Vazirani,et al.  Approximation algorithms for metric facility location and k-Median problems using the primal-dual schema and Lagrangian relaxation , 2001, JACM.

[5]  An A Fabii,et al.  Improved Approximation Algorithms for Uncapacitated Facility Location , 1998 .

[6]  Leonidas J. Guibas,et al.  Kinetic Medians and kd-Trees , 2002, ESA.

[7]  Joachim Gehweiler,et al.  A Distributed O(1)-Approximation Algorithm for the Uniform Facility Location Problem , 2006, SPAA '06.

[8]  Leonidas J. Guibas,et al.  Kinetic binary space partitions for intersecting segments and disjoint triangles , 1998, SODA '98.

[9]  Sudipto Guha,et al.  Improved combinatorial algorithms for the facility location and k-median problems , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[10]  Jiawei Zhang,et al.  Approximation algorithms for facility location problems , 2004 .

[11]  Leonidas J. Guibas,et al.  Data structures for mobile data , 1997, SODA '97.

[12]  Amin Saberi,et al.  A new greedy approach for facility location problems , 2002, STOC '02.

[13]  John Hershberger,et al.  Kinetic collision detection with fast flight plan changes , 2004, Inf. Process. Lett..

[14]  Satish Rao,et al.  A Nearly Linear-Time Approximation Scheme for the Euclidean k-Median Problem , 2007, SIAM J. Comput..

[15]  Éva Tardos,et al.  Approximation algorithms for facility location problems (extended abstract) , 1997, STOC '97.

[16]  Samir Khuller,et al.  Greedy strikes back: improved facility location algorithms , 1998, SODA '98.

[17]  Sergey Bereg,et al.  Mobile facility location (extended abstract) , 2000, DIALM '00.

[18]  Subhash Suri,et al.  Simplified kinetic connectivity for rectangles and hypercubes , 2001, SODA '01.

[19]  Artur Czumaj,et al.  Efficient Kinetic Data Structures for MaxCut , 2007, CCCG.

[20]  Piotr Indyk,et al.  Facility Location in Sublinear Time , 2005, ICALP.

[21]  Leonidas J. Guibas,et al.  Deformable spanners and applications. , 2006, Computational geometry : theory and applications.

[22]  C. Greg Plaxton,et al.  The online median problem , 1999, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[23]  Sukhamay Kundu A Distributed O(|E|) Algorithm for Optimal Link-Reversal , 2009, ICDCN.

[24]  Mohammad Mahdian,et al.  Improved Approximation Algorithms for Metric Facility Location Problems , 2002, APPROX.

[25]  Leonidas J. Guibas,et al.  Kinetic data structures: a state of the art report , 1998 .

[26]  Leonidas J. Guibas,et al.  Kinetic collision detection between two simple polygons , 2004, SODA '99.

[27]  Pankaj K. Agarwal,et al.  Approximating extent measures of points , 2004, JACM.

[28]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[29]  Leonidas J. Guibas,et al.  Proximity problems on moving points , 1997, SCG '97.

[30]  Leonidas J. Guibas,et al.  Cylindrical static and kinetic binary space partitions , 2000, Comput. Geom..

[31]  Piotr Indyk,et al.  Algorithms for dynamic geometric problems over data streams , 2004, STOC '04.

[32]  Mikkel Thorup,et al.  Quick k-Median, k-Center, and Facility Location for Sparse Graphs , 2001, SIAM J. Comput..

[33]  Leonidas J. Guibas,et al.  Maintaining the Extent of a Moving Point Set , 2001, Discret. Comput. Geom..

[34]  Bettina Speckmann,et al.  Kinetic KD-trees and longest-side KD-trees , 2007, SCG '07.

[35]  Bettina Speckmann,et al.  Kinetic collision detection for simple polygons , 2000, SCG '00.

[36]  Leonidas J. Guibas,et al.  Kinetic Connectivity for Unit Disks , 2001, Discret. Comput. Geom..

[37]  Leonidas J. Guibas,et al.  Lower bounds for kinetic planar subdivisions , 1999, SCG '99.

[38]  Leonidas J. Guibas,et al.  Discrete Mobile Centers , 2003, Discret. Comput. Geom..