High order conservative differencing for viscous terms and the application to vortex-induced vibration flows

A new set of conservative 4th-order central finite differencing schemes for all the viscous terms of compressible Navier-Stokes equations are proposed and proved in this paper. These schemes are used with a 5th-order WENO scheme for inviscid flux and the stencil width of the central differencing scheme is designed to be within that of the WENO scheme. The central differencing schemes achieve the maximum order of accuracy in the stencil. This feature is important to keep the compactness of the overall discretization schemes and facilitate the boundary condition treatment. The algorithm is used to simulate the vortex-induced oscillations of an elastically mounted circular cylinder. The numerical results agree favorably with the experiment.

[1]  Haym Benaroya,et al.  An overview of modeling and experiments of vortex-induced vibration of circular cylinders , 2005 .

[2]  Charles H. K. Williamson,et al.  A brief review of recent results in vortex-induced vibrations , 2008 .

[3]  A. Roshko On the development of turbulent wakes from vortex streets , 1953 .

[4]  Sanjay Mittal,et al.  Effect of blockage on vortex-induced vibrations at low Reynolds numbers , 2006 .

[5]  Kris Ryan,et al.  Flow-induced vibrations of a tethered circular cylinder , 2004 .

[6]  H. M. B L A C K B U R N,et al.  A study of two-dimensional flow past an oscillating cylinder , 2022 .

[7]  Q. Miao,et al.  Numerical simulation of vortex-induced vibration of a circular cylinder at low mass-damping using RANS code , 2007 .

[8]  Gecheng Zha,et al.  Fully Coupled Fluid-Structural Interactions Using an Efficient High Solution Upwind Scheme , 2004 .

[9]  George Em Karniadakis,et al.  Vortex mode selection of a rigid cylinder subject to VIV at low mass-damping , 2005 .

[10]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[11]  Gecheng Zha,et al.  Improvement of the WENO scheme smoothness estimator , 2008 .

[12]  Dominique Pelletier,et al.  Perspective on the geometric conservation law and finite element methods for ALE simulations of incompressible flow , 2009, J. Comput. Phys..

[13]  S. Mittal,et al.  FLOW-INDUCED VIBRATIONS OF A LIGHT CIRCULAR CYLINDER AT REYNOLDS NUMBERS 103TO 104 , 2001 .

[14]  Emmanuel Guilmineau,et al.  Numerical simulation of vortex-induced vibration of a circular cylinder with low mass-damping in a turbulent flow , 2004 .

[15]  Gecheng Zha,et al.  Improvement of Stability and Accuracy for Weighted Essentially Nonoscillatory Scheme , 2009 .

[16]  Z. Wang High-order methods for the Euler and Navier–Stokes equations on unstructured grids , 2007 .

[17]  Dimitri J. Mavriplis,et al.  Construction of the discrete geometric conservation law for high-order time-accurate simulations on dynamic meshes , 2006, J. Comput. Phys..

[18]  Gecheng Zha,et al.  Fully coupled fluid–structural interactions using an efficient high resolution upwind scheme , 2005 .

[19]  Chi-Wang Shu,et al.  Numerical Comparison of WENO Finite Volume and Runge–Kutta Discontinuous Galerkin Methods , 2001, J. Sci. Comput..

[20]  P. Queutey,et al.  A NUMERICAL SIMULATION OF VORTEX SHEDDING FROM AN OSCILLATING CIRCULAR CYLINDER , 2002 .

[21]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[22]  Juan B. V. Wanderley,et al.  Validation of a finite difference method for the simulation of vortex-induced vibrations on a circular cylinder , 2002 .

[23]  L. P.,et al.  Modern Developments in Fluid Dynamics , 1939, Nature.

[24]  Eleuterio F. Toro,et al.  Finite-volume WENO schemes for three-dimensional conservation laws , 2004 .

[25]  Peter Hagedorn,et al.  On the numerical simulation of vortex-induced vibrations of oscillating conductors , 2005 .

[26]  Charles Dalton,et al.  The contrast in phase angles between forced and self-excited oscillations of a circular cylinder , 2005 .

[27]  David W. Zingg,et al.  Aerodynamic computations using a higher-order algorithm , 1999 .

[28]  Miguel R. Visbal,et al.  On the use of higher-order finite-difference schemes on curvilinear and deforming meshes , 2002 .

[29]  Gecheng Zha,et al.  Implicit WENO Scheme and High Order Viscous Formulas for Compressible Flows , 2007 .

[30]  John A. Ekaterinaris,et al.  High-order accurate, low numerical diffusion methods for aerodynamics , 2005 .

[31]  Juan J. Alonso,et al.  Multigrid unsteady Navier-Stokes calculations with aeroelastic applications , 1995 .

[32]  P. Thomas,et al.  Geometric Conservation Law and Its Application to Flow Computations on Moving Grids , 1979 .

[33]  Wang Chi-Shu,et al.  Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws , 1997 .

[34]  C. Williamson,et al.  Vortex-Induced Vibrations , 2004, Wind Effects on Structures.

[35]  Turgut Sarpkaya,et al.  A critical review of the intrinsic nature of vortex-induced vibrations , 2004 .

[36]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[37]  Thomas H. Pulliam,et al.  Comparison of Several Spatial Discretizations for the Navier-Stokes Equations , 1999 .

[38]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[39]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[40]  H. Al-Jamal,et al.  Vortex induced vibrations using Large Eddy Simulation at a moderate Reynolds number , 2004 .

[41]  Chi-Wang Shu,et al.  Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .

[42]  Miguel R. Visbal,et al.  Accuracy and Coupling Issues of Aeroelastic Navier-Stokes Solutions on Deforming Meshes , 1997 .

[43]  Ramji Kamakoti,et al.  Fluid–structure interaction for aeroelastic applications , 2004 .

[44]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[45]  R. Henderson,et al.  A study of two-dimensional flow past an oscillating cylinder , 1999, Journal of Fluid Mechanics.

[46]  Gecheng Zha,et al.  Numerical study on flow separation of a transonic cascade , 2004 .

[47]  S. Mittal,et al.  International Journal for Numerical Methods in Fluids Control of Vortex Shedding behind Circular Cylinder for Flows at Low Reynolds Numbers , 2022 .

[48]  Charles H. K. Williamson,et al.  A complementary numerical and physical investigation of vortex-induced vibration , 2001 .

[49]  A. E. Holdø,et al.  Large Eddy Simulation of a Smooth Circular Cylinder Oscillating Normal to a Uniform Flow , 2000 .

[50]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[51]  G. Karniadakis,et al.  Two- and Three-Dimensional Simulations of Vortex-Induced Vibration of a Circular Cylinder , 1993 .

[52]  Aziz Hamdouni,et al.  Numerical simulation of an oscillating cylinder in a cross-flow at low Reynolds number: Forced and free oscillations , 2009 .

[53]  George Em Karniadakis,et al.  DNS-DERIVED FORCE DISTRIBUTION ON FLEXIBLE CYLINDERS SUBJECT TO VORTEX-INDUCED VIBRATION , 2000 .

[54]  G. Karniadakis,et al.  DNS of flow past a stationary and oscillating cylinder at Re=10000 , 2005 .

[55]  Gecheng Zha,et al.  Comparison Study of Implicit Gauss-Seidel Line Iteration Method for Transonic Flows , 2007 .