On a multivariate contraction method for random recursive structures with applications to Quicksort

The contraction method for recursive algorithms is extended to the multivariate analysis of vectors of parameters of recursive structures and algorithms. We prove a general multivariate limit law, which also leads to an approach to asymptotic covariances and correlations of the parameters. As an application, the asymptotic correlations and a bivariate limit law for the number of key comparisons and exchanges of median-of-(2t+1) Quicksort are given. Moreover, for the Quicksort programs analyzed by Sedgewick the exact order of the standard deviation and a limit law follow, considering all the parameters counted by Sedgewick. © 2001 John Wiley & Sons, Inc. Random Struct. Alg., 19: 498–524, 2001

[1]  Hosam M. Mahmoud,et al.  On the joint distribution of the insertion path length and the number of comparisons in search trees , 1988, Discret. Appl. Math..

[2]  Hosam M. Mahmoud,et al.  Asymptitic Hoint Normality of Outdegrees of Nodes in Random Recursive Trees , 1992, Random Struct. Algorithms.

[3]  S. Rachev,et al.  Probability metrics and recursive algorithms , 1995, Advances in Applied Probability.

[4]  Pascal Hennequin Analyse en moyenne d'algorithmes, tri rapide et arbres de recherche , 1991 .

[5]  J. Geiger A new proof of Yaglom’s exponential limit law , 2000 .

[6]  Mireille Régnier A Limiting Distribution for Quicksort , 1989, RAIRO Theor. Informatics Appl..

[7]  Ludger Rüschendorf,et al.  Convergence of two-dimensional branching recursions , 2001 .

[8]  G. Dall'aglio Sugli estremi dei momenti delle funzioni di ripartizione doppia , 1956 .

[9]  Jerzy Szymanski,et al.  On the Structure of Random Plane-oriented Recursive Trees and Their Branches , 1993, Random Struct. Algorithms.

[10]  C. SIAMJ. OPTIMAL SAMPLING STRATEGIES IN QUICKSORT AND QUICKSELECT , 2001 .

[11]  Martin J. Dürst,et al.  The design and analysis of spatial data structures. Applications of spatial data structures: computer graphics, image processing, and GIS , 1991 .

[12]  U. Rösler A fixed point theorem for distributions , 1992 .

[13]  G. H. Gonnet,et al.  Handbook of algorithms and data structures: in Pascal and C (2nd ed.) , 1991 .

[14]  D. Greene Labelled formal languages and their uses , 1983 .

[15]  P. Hennequin Combinatorial Analysis of Quicksort Algorithm , 1989, RAIRO Theor. Informatics Appl..

[16]  H. Mahmoud Sorting: A Distribution Theory , 2000 .

[17]  Luc Devroye Universal Limit Laws for Depths in Random Trees , 1998, SIAM J. Comput..

[18]  Hosam M. Mahmoud,et al.  Evolution of random search trees , 1991, Wiley-Interscience series in discrete mathematics and optimization.

[19]  Philippe Flajolet,et al.  Partial match retrieval of multidimensional data , 1986, JACM.

[20]  J. Doob Stochastic processes , 1953 .

[21]  Edward A. Bender,et al.  Central and Local Limit Theorems Applied to Asymptotic Enumeration II: Multivariate Generating Functions , 1983, J. Comb. Theory, Ser. A.

[22]  H. Hurwitz,et al.  On the probability distribution of the values of binary trees , 1971, CACM.

[23]  Uwe Rr Osler The Contraction Method for Recursive Algorithms , 1999 .

[24]  L. Rüschendorf,et al.  LIMIT LAWS FOR PARTIAL MATCH QUERIES IN QUADTREES , 2001 .

[25]  Edward A. Bender,et al.  Central and Local Limit Theorems Applied to Asymptotic Enumeration , 1973, J. Comb. Theory A.

[26]  Philippe Flajolet,et al.  Hypergeometrics and the Cost Structure of Quadtrees , 1995, Random Struct. Algorithms.

[27]  Gaston H. Gonnet,et al.  Handbook Of Algorithms And Data Structures , 1984 .

[28]  P. Hadjicostas,et al.  Some properties of a limiting distribution in Quicksort , 1995 .

[29]  Hsien-Kuei Hwang,et al.  Phase Change of Limit Laws in the Quicksort Recurrence under Varying Toll Functions , 2002, SIAM J. Comput..

[30]  P. Major On the invariance principle for sums of independent identically distributed random variables , 1978 .

[31]  Ralph Neininger,et al.  Limit laws for random recursive structures and algorithms , 1999 .

[32]  S. Rachev,et al.  Mass transportation problems , 1998 .

[33]  U. Rösler A limit theorem for "Quicksort" , 1991, RAIRO Theor. Informatics Appl..

[34]  Ralph Neininger Asymptotic distributions for partial match queries in K-d trees , 2000, Random Struct. Algorithms.

[35]  Luc Devroye,et al.  Branching Processes and Their Applications in the Analysis of Tree Structures and Tree Algorithms , 1998 .

[36]  Ludger Rüschendorf,et al.  On the internal path length of d-dimensional quad trees , 1999, Random Struct. Algorithms.

[37]  Philippe Flajolet,et al.  Search costs in quadtrees and singularity perturbation asymptotics , 1994, Discret. Comput. Geom..

[38]  R. B. Hayward,et al.  Large Deviations for Quicksort , 1996, J. Algorithms.

[39]  Zhicheng Gao,et al.  Central and local limit theorems applied to asymptotic enumeration IV: multivariate generating functions , 1992 .

[40]  Hosam M. Mahmoud,et al.  The Joint Distribution of Elastic Buckets in Multiway Search Trees , 1994, SIAM J. Comput..

[41]  M. H. van Emden Increasing the efficiency of quicksort , 1970, CACM.

[42]  Ralph Neininger The Wiener Index Of Random Trees , 2002, Comb. Probab. Comput..

[43]  R. Burton,et al.  An L 2 convergence theorem for random affine mappings , 1995, Journal of Applied Probability.

[44]  D. Freedman,et al.  Some Asymptotic Theory for the Bootstrap , 1981 .

[45]  Jim Freeman Probability Metrics and the Stability of Stochastic Models , 1991 .

[46]  Luc Devroye,et al.  An Analysis of Random d-Dimensional Quad Trees , 1990, SIAM J. Comput..

[47]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .