Randomized Polynomial-Time Root Counting in Prime Power Rings

Suppose $k,p\!\in\!\mathbb{N}$ with $p$ prime and $f\!\in\!\mathbb{Z}[x]$ is a univariate polynomial with degree $d$ and all coefficients having absolute value less than $p^k$. We give a Las Vegas randomized algorithm that computes the number of roots of $f$ in $\mathbb{Z}/\!\left(p^k\right)$ within time $d^3(k\log p)^{2+o(1)}$. (We in fact prove a more intricate complexity bound that is slightly better.) The best previous general algorithm had (deterministic) complexity exponential in $k$. We also present some experimental data evincing the potential practicality of our algorithm.

[1]  D. R. Heath-Brown,et al.  An Introduction to the Theory of Numbers, Sixth Edition , 2008 .

[2]  A. L. Chistov Efficient Factoring Polynomials over Local Fields and Its Applications , 1990 .

[3]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[4]  J. M. Rojas,et al.  Counting roots for polynomials modulo prime powers , 2018 .

[5]  Antoine Chambert-Loir,et al.  Compter (rapidement) le nombre de solutions d'\'equations dans les corps finis , 2006, math/0611584.

[6]  Qi Cheng Primality Proving via One Round in ECPP and One Iteration in AKS , 2003, CRYPTO.

[7]  B. R. McDonald Finite Rings With Identity , 1974 .

[8]  Michael Clausen,et al.  Algebraic Complexity Theory : With the Collaboration of Thomas Lickteig , 1997 .

[9]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[10]  Ana Salagean,et al.  Factoring polynomials over Z4 and over certain Galois rings , 2005, Finite Fields Their Appl..

[11]  Joachim von zur Gathen,et al.  Factoring Modular Polynomials , 1998, J. Symb. Comput..

[12]  Wouter Castryck,et al.  Computing Zeta Functions of Nondegenerate Curves , 2006, IACR Cryptol. ePrint Arch..

[13]  Adam R. Klivans Factoring Polynomials Modulo Composites , 1997 .

[14]  CONGRUENCES, TREES, AND P-ADIC INTEGERS , 1997 .

[15]  Daqing Wan,et al.  Algorithmic theory of zeta functions over finite fields , 2008 .

[16]  Jérémy Berthomieu,et al.  Polynomial root finding over local rings and application to error correcting codes , 2013, Applicable Algebra in Engineering, Communication and Computing.

[17]  D. Cantor,et al.  Factoring polynomials over p-adic fields , 2000 .

[18]  Michael Clausen,et al.  Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.

[19]  J. Maurice Rojas,et al.  Faster p-adic feasibility for certain multivariate sparse polynomials , 2010, J. Symb. Comput..

[20]  Christopher Umans,et al.  Fast Polynomial Factorization and Modular Composition , 2011, SIAM J. Comput..

[21]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[22]  Jan Denef,et al.  Report on Igusa's local zeta function , 1991 .

[23]  R. Raghavendran,et al.  Finite associative rings , 1969 .

[24]  J. Igusa,et al.  Complex powers and asymptotic expansions. I. Functions of certain types. , 1974 .

[25]  W. A. Zuniga-Galindo Computing Igusa's Local Zeta Functions of Univariate Polynomials, and Linear Feedback Shift Registers , 2003, ArXiv.

[26]  Alan G. B. Lauder Counting Solutions to Equations in Many Variables over Finite Fields , 2004, Found. Comput. Math..

[27]  I. Niven,et al.  An introduction to the theory of numbers , 1961 .

[28]  Alan G. B. Lauder,et al.  Counting points on varieties over finite fields of small characteristic , 2006, math/0612147.

[29]  Shuhong Gao,et al.  A new framework for computing Gröbner bases , 2015, Math. Comput..

[30]  Enric Nart,et al.  Single-factor lifting and factorization of polynomials over local fields , 2011, J. Symb. Comput..

[31]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .