Extremal connectivity for topological cliques in bipartite graphs
暂无分享,去创建一个
[1] W. Mader,et al. Grad und lokaler Zusammenhang in endlichen Graphen , 1973 .
[2] Reinhard Diestel,et al. Graph Theory , 1997 .
[3] Andrew Thomason,et al. The Extremal Function for Complete Minors , 2001, J. Comb. Theory B.
[4] W. Mader. Homomorphieeigenschaften und mittlere Kantendichte von Graphen , 1967 .
[5] W. Mader. Existenzn-fach zusammenhängender Teilgraphen in Graphen genügend großer Kantendichte , 1972 .
[6] Béla Bollobás,et al. Random Graphs , 1985 .
[7] Béla Bollobás,et al. Proof of a Conjecture of Mader, Erdös and Hajnal on Topological Complete Subgraphs , 1998, Eur. J. Comb..
[8] János Komlós,et al. Topological Cliques in Graphs , 1994, Combinatorics, Probability and Computing.
[9] H. Jung. Eine Verallgemeinerung desn-fachen Zusammenhangs für Graphen , 1970 .
[10] Svante Janson,et al. Random graphs , 2000, ZOR Methods Model. Oper. Res..
[11] Joseph Samuel Myers,et al. Graphs without Large Complete Minors are Quasi-Random , 2002, Combinatorics, Probability and Computing.
[12] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[13] Béla Bollobás,et al. Modern Graph Theory , 2002, Graduate Texts in Mathematics.
[14] Andrew Thomason,et al. Two Minor Problems , 2004, Combinatorics, Probability and Computing.
[15] V. Rödl,et al. On graphs with small subgraphs of large chromatic number , 1985, Graphs Comb..
[16] M. Simonovits,et al. Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .
[17] B. Bollobás,et al. Extremal Graph Theory , 2013 .