Extremal connectivity for topological cliques in bipartite graphs

Let d(s) be the smallest number such that every graph of average degree > d(s) contains a subdivision of Ks. So far, the best known asymptotic bounds for d(s) are (1 + o(1))9s2/64 ≤ d(s) ≤ (1 + o(1))s2/2. As observed by Łuczak, the lower bound is obtained by considering bipartite random graphs. Since with high probability the connectivity of these random graphs is about the same as their average degree, a connectivity of (1 + o(1))9s2/64 is necessary to guarantee a subdivided Ks. Our main result shows that for bipartite graphs this gives the correct asymptotics. We also prove that in the non-bipartite case a connectivity of (1 + o(1))s2/4 suffices to force a subdivision of Ks. Moreover, we slightly improve the constant in the upper bound for d(s) from 1/2 (which is due to Komlos and Szemeredi) to 10/23.

[1]  W. Mader,et al.  Grad und lokaler Zusammenhang in endlichen Graphen , 1973 .

[2]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[3]  Andrew Thomason,et al.  The Extremal Function for Complete Minors , 2001, J. Comb. Theory B.

[4]  W. Mader Homomorphieeigenschaften und mittlere Kantendichte von Graphen , 1967 .

[5]  W. Mader Existenzn-fach zusammenhängender Teilgraphen in Graphen genügend großer Kantendichte , 1972 .

[6]  Béla Bollobás,et al.  Random Graphs , 1985 .

[7]  Béla Bollobás,et al.  Proof of a Conjecture of Mader, Erdös and Hajnal on Topological Complete Subgraphs , 1998, Eur. J. Comb..

[8]  János Komlós,et al.  Topological Cliques in Graphs , 1994, Combinatorics, Probability and Computing.

[9]  H. Jung Eine Verallgemeinerung desn-fachen Zusammenhangs für Graphen , 1970 .

[10]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[11]  Joseph Samuel Myers,et al.  Graphs without Large Complete Minors are Quasi-Random , 2002, Combinatorics, Probability and Computing.

[12]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[13]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.

[14]  Andrew Thomason,et al.  Two Minor Problems , 2004, Combinatorics, Probability and Computing.

[15]  V. Rödl,et al.  On graphs with small subgraphs of large chromatic number , 1985, Graphs Comb..

[16]  M. Simonovits,et al.  Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .

[17]  B. Bollobás,et al.  Extremal Graph Theory , 2013 .