Some new optical dromions to (2+1)-dimensional nonlinear Schrödinger equation with Kerr law of nonlinearity

[1]  A. Seadawy,et al.  Analytical mathematical approaches for the double-chain model of DNA by a novel computational technique , 2021 .

[2]  Sachin Kumar,et al.  Lie symmetry analysis, abundant exact solutions and dynamics of multisolitons to the $$(2+1)$$ ( 2 + 1 ) -dimensional KP-BBM equation , 2021, Pramana.

[3]  S. Réhman,et al.  Modulation instability analysis and longitudinal wave propagation in an elastic cylindrical rod modelled with Pochhammer-Chree equation , 2021 .

[4]  D. Baleanu,et al.  Lump, lump-one stripe, multiwave and breather solutions for the Hunter–Saxton equation , 2021 .

[5]  Amit Kumar,et al.  Lie symmetry analysis for obtaining the abundant exact solutions, optimal system and dynamics of solitons for a higher-dimensional Fokas equation , 2020 .

[6]  A. Seadawy,et al.  Dispersive of propagation wave solutions to unidirectional shallow water wave Dullin–Gottwald–Holm system and modulation instability analysis , 2020, Mathematical Methods in the Applied Sciences.

[7]  S. Kumar,et al.  Lie symmetry analysis and dynamical structures of soliton solutions for the (2 + 1)-dimensional modified CBS equation , 2020 .

[8]  A. Seadawy,et al.  Chirp-free optical dromions for the presence of higher order spatio-temporal dispersions and absence of self-phase modulation in birefringent fibers , 2020 .

[9]  A. Bekir,et al.  Interaction properties of solitons for a couple of nonlinear evolution equations , 2020 .

[10]  A. Wazwaz,et al.  Lie symmetry analysis, exact analytical solutions and dynamics of solitons for (2 + 1)-dimensional NNV equations , 2020, Physica Scripta.

[11]  Sachin Kumar,et al.  Lie symmetry reductions and dynamics of soliton solutions of (2 $$+$$ 1)-dimensional Pavlov equation , 2020, Pramana.

[12]  A. Seadawy,et al.  Propagation of isolated waves of coupled nonlinear (2 + 1)-dimensional Maccari System in plasma physics , 2020 .

[13]  Nikolai A. Kudryashov,et al.  Highly dispersive solitary wave solutions of perturbed nonlinear Schrödinger equations , 2020, Appl. Math. Comput..

[14]  D. Lu,et al.  Propagation of traveling wave solutions for nonlinear evolution equation through the implementation of the extended modified direct algebraic method , 2020, Applied Mathematics-A Journal of Chinese Universities.

[15]  Xiaoen Zhang,et al.  Inverse scattering transformation for generalized nonlinear Schrödinger equation , 2019, Appl. Math. Lett..

[16]  Amit Kumar,et al.  Lie symmetry reductions and group invariant solutions of (2 + 1)-dimensional modified Veronese web equation , 2019, Nonlinear Dynamics.

[17]  G. Akram,et al.  Exact solitary wave solutions by extended rational sine-cosine and extended rational sinh-cosh techniques , 2019, Physica Scripta.

[18]  D. Lu,et al.  Application of mathematical methods on the system of dynamical equations for the ion sound and Langmuir waves , 2019, Pramana.

[19]  D. Lu,et al.  Kinky breathers, W-shaped and multi-peak solitons interaction in (2 + 1)-dimensional nonlinear Schrödinger equation with Kerr law of nonlinearity , 2019, The European Physical Journal Plus.

[20]  D. Lu,et al.  Mathematical methods via construction of traveling and solitary wave solutions of three coupled system of nonlinear partial differential equations and their applications , 2018, Results in Physics.

[21]  J. Jiao,et al.  Optical solitons and periodic solutions of the (2 + 1)-dimensional nonlinear Schrödinger's equation , 2018, Physics Letters A.

[22]  H. M. Baskonus,et al.  Optical solitons to the space-time fractional (1+1)-dimensional coupled nonlinear Schrödinger equation , 2018, Optik.

[23]  H. M. Baskonus,et al.  Investigations of dark, bright, combined dark-bright optical and other soliton solutions in the complex cubic nonlinear Schrödinger equation with δ-potential , 2018 .

[24]  M. Mirzazadeh,et al.  Application of the generalized Kudryashov method to the Eckhaus equation , 2016 .

[25]  M. Eslami,et al.  Optical solitons with Biswas–Milovic equation by extended trial equation method , 2016 .

[26]  Rehab M. El-Shiekh,et al.  Integral Methods to Solve the Variable Coefficient Nonlinear Schrödinger Equation , 2013 .

[27]  Elsayed M. E. Zayed,et al.  A note on the modified simple equation method applied to Sharma-Tasso-Olver equation , 2011, Appl. Math. Comput..

[28]  V. Marinakis,et al.  Some Remarks on Exp-Function Method and Its Applications , 2011 .

[29]  Anjan Biswas,et al.  Modified simple equation method for nonlinear evolution equations , 2010, Appl. Math. Comput..

[30]  Sheng Zhang,et al.  APPLICATION OF EXP-FUNCTION METHOD TO HIGH-DIMENSIONAL NONLINEAR EVOLUTION EQUATION , 2008 .

[31]  Abdul-Majid Wazwaz,et al.  New travelling wave solutions to the Boussinesq and the Klein–Gordon equations , 2008 .

[32]  Ji-Huan He,et al.  Exp-function method for nonlinear wave equations , 2006 .

[33]  Aly R. Seadawy,et al.  General soliton solutions for nonlinear dispersive waves in convective type instabilities , 2006 .

[34]  A. Wazwaz THE TANH AND THE SINE–COSINE METHODS FOR A RELIABLE TREATMENT OF THE MODIFIED EQUAL WIDTH EQUATION AND ITS VARIANTS , 2006 .

[35]  Abdul-Majid Wazwaz,et al.  The tanh method and the sine–cosine method for solving the KP-MEW equation , 2005, Int. J. Comput. Math..

[36]  Engui Fan,et al.  Generalized tanh Method Extended to Special Types of Nonlinear Equations , 2002 .

[37]  W. Hereman,et al.  The tanh method: II. Perturbation technique for conservative systems , 1996 .

[38]  Mingliang Wang SOLITARY WAVE SOLUTIONS FOR VARIANT BOUSSINESQ EQUATIONS , 1995 .

[39]  A. Seadawy,et al.  Traveling wave solutions for the fractional Wazwaz–Benjamin–Bona–Mahony model in arising shallow water waves , 2021 .

[40]  A. Seadawy,et al.  Diverse exact solutions for modified nonlinear Schrödinger equation with conformable fractional derivative , 2021 .

[41]  Ismail Aslan Some Remarks on Exp-Function Method and Its Applications-A Supplement , 2013 .

[42]  A. H. Arnous,et al.  Exact Traveling Wave Solutions of Nonlinear PDEs in Mathematical Physics Using the Modified Simple Equation Method , 2013 .

[43]  D. Lu,et al.  New Jacobi Elliptic Functions Solutions for the Higher-order Nonlinear Schrodinger Equation , 2009 .