Compact binaries in star clusters – I. Black hole binaries inside globular clusters

We study the compact binary population in star clusters, focusing on binaries containing black holes, using a self-consistent Monte Carlo treatment of dynamics and full stellar evolution. We find that the black holes experience strong mass segregation and become centrally concentrated. In the core the black holes interact strongly with each other and black hole–black hole binaries are formed very efficiently. The strong interactions, however, also destroy or eject the black hole–black hole binaries. We find no black hole–black hole mergers within our simulations but produce many hard escapers that will merge in the Galactic field within a Hubble time. We also find several highly eccentric black hole–black hole binaries that are potential Laser Interferometer Space Antenna (LISA) sources, suggesting that star clusters are interesting targets for space-based detectors. We conclude that star clusters must be taken into account when predicting compact binary population statistics.

[1]  T. Bulik,et al.  DOUBLE COMPACT OBJECTS AS LOW-FREQUENCY GRAVITATIONAL WAVE SOURCES , 2008, 0811.1602.

[2]  S. Larson,et al.  THE LISA GRAVITATIONAL WAVE FOREGROUND: A STUDY OF DOUBLE WHITE DWARFS , 2007, 0705.3272.

[3]  D. Heggie,et al.  1 Gyr in the life of the globular cluster NGC 6397 , 2009, 0904.4852.

[4]  D. Heggie,et al.  Monte Carlo simulations of star clusters -VI. The globular cluster NGC 6397 , 2009, 0901.1085.

[5]  D. Heggie,et al.  Monte Carlo simulations of star clusters – V. The globular cluster M4 , 2008 .

[6]  Australia.,et al.  Monte Carlo simulations of star clusters -IV. Calibration of the Monte Carlo code and comparison with observations for the open cluster M67 , 2008, 0801.3709.

[7]  T. Bulik,et al.  The Total Merger Rate of Compact Object Binaries in the Local Universe , 2007, 0710.0878.

[8]  K. Belczynski,et al.  Formation and evolution of compact binaries in globular clusters – II. Binaries with neutron stars , 2007, 0706.4096.

[9]  T. Bulik,et al.  On the Rarity of Double Black Hole Binaries: Consequences for Gravitational Wave Detection , 2006, astro-ph/0612032.

[10]  Emil Khalisi,et al.  A comprehensive nbody study of mass segregation in star clusters: energy equipartition and escape , 2006, astro-ph/0602570.

[11]  F. Rasio,et al.  Monte Carlo Simulations of Globular Cluster Evolution. IV. Direct Integration of Strong Interactions , 2006, astro-ph/0608261.

[12]  Bernard F. Schutz,et al.  Search for gravitational waves from binary black hole inspirals in LIGO data , 2006 .

[13]  R. O’Shaughnessy,et al.  Binary Mergers and Growth of Black Holes in Dense Star Clusters , 2005, astro-ph/0508224.

[14]  W. E. Harris,et al.  Globular Cluster Systems in Brightest Cluster Galaxies: Bimodal Metallicity Distributions and the Nature of the High-Luminosity Clusters , 2005, astro-ph/0508195.

[15]  T. Bulik,et al.  Initial Populations of Black Holes in Star Clusters , 2005, astro-ph/0508005.

[16]  N. Cornish,et al.  Characterizing the galactic gravitational wave background with LISA , 2005, gr-qc/0504071.

[17]  M. Giersz Monte Carlo simulations of star clusters – III. A million-body star cluster , 2005, astro-ph/0512606.

[18]  et al,et al.  Search for gravitational waves from galactic and extra-galactic binary neutron stars , 2005, gr-qc/0505041.

[19]  M. Miller,et al.  Growth of Intermediate-Mass Black Holes in Globular Clusters , 2004, astro-ph/0402532.

[20]  P. Hut,et al.  Star cluster ecology – V. Dissection of an open star cluster: spectroscopy , 2003, astro-ph/0301041.

[21]  M. Giersz,et al.  A stochastic Monte Carlo approach to modelling real star cluster evolution - III. Direct integration of three- and four-body interactions , 2003, astro-ph/0301643.

[22]  D. Heggie,et al.  Binaries in Star Clusters , 2003 .

[23]  C. Tout,et al.  Evolution of binary stars and the effect of tides on binary populations , 2002, astro-ph/0201220.

[24]  Tomasz Bulik,et al.  A Comprehensive Study of Binary Compact Objects as Gravitational Wave Sources: Evolutionary Channels, Rates, and Physical Properties , 2001, astro-ph/0111452.

[25]  M. Benacquista Gravitational radiation from black hole binaries in globular clusters , 2001, astro-ph/0110016.

[26]  S. F. Portegies Zwart,et al.  The gravitational wave signal from the Galactic disk population of binaries containing two compact objects. , 2001, astro-ph/0105221.

[27]  H. Baumgardt Scaling of N-body calculations , 2000, astro-ph/0012330.

[28]  R. Narayan,et al.  The Coalescence Rate of Double Neutron Star Systems , 2000, astro-ph/0012038.

[29]  M. Giersz Monte Carlo simulations of star clusters – II. Tidally limited, multimass systems with stellar evolution , 2000, astro-ph/0009341.

[30]  V. Pierro,et al.  Fast and accurate computational tools for gravitational waveforms from binary stars with any orbital eccentricity , 2000, gr-qc/0005044.

[31]  C. Tout,et al.  Comprehensive analytic formulae for stellar evolution as a function of mass and metallicity , 2000, astro-ph/0001295.

[32]  F. Rasio,et al.  Thermal and Dynamical Equilibrium in Two-Component Star Clusters , 1999, astro-ph/9912457.

[33]  McMillan,et al.  Black Hole Mergers in the Universe , 1999, The Astrophysical journal.

[34]  M. Giersz Monte Carlo simulations of star clusters - I. First Results , 1998, astro-ph/9804127.

[35]  C. Cutler Angular resolution of the LISA gravitational wave detector , 1997, gr-qc/9703068.

[36]  California Institute of Technology,et al.  The Pulsar kick velocity distribution , 1997, astro-ph/9708071.

[37]  William E. Harris,et al.  A Catalog of Parameters for Globular Clusters in the Milky Way , 1996 .

[38]  D. Heggie,et al.  Binary--Single-Star Scattering. VII. Hard Binary Exchange Cross Sections for Arbitrary Mass Ratios: Numerical Results and Semianalytic FITS , 1996, astro-ph/9604016.

[39]  Jeremiah P. Ostriker,et al.  Dynamical Evolution of Globular Clusters , 1996 .

[40]  P. Kroupa The dynamical properties of stellar systems in the Galactic disc , 1995, astro-ph/9508084.

[41]  D. Lorimer,et al.  High birth velocities of radio pulsars , 1994, Nature.

[42]  D. Heggie,et al.  Statistics of N-body simulations – I. Equal masses before core collapse , 1993, astro-ph/9305008.

[43]  Steinn Sigurdsson,et al.  Binary-single star interactions in globular clusters , 1993 .

[44]  Christopher A. Tout,et al.  The effects of unresolved binary stars on the determination of the stellar mass function , 1991 .

[45]  R. Webbink,et al.  Gravitational radiation from the Galaxy , 1990 .

[46]  I. Iben,et al.  Degenerate dwarf binaries as promising, detectable sources of gravitational radiation , 1987 .

[47]  L. Spitzer Dynamical evolution of globular clusters , 1987 .

[48]  S. Mikkola Encounters of binaries. III: Fly-bys , 1984 .

[49]  Douglas C. Heggie,et al.  Binary evolution in stellar dynamics , 1975 .

[50]  M. Hénon Monte Carlo models of star clusters , 1971 .

[51]  P. C. Peters Gravitational Radiation and the Motion of Two Point Masses , 1964 .

[52]  J. Mathews,et al.  Gravitational radiation from point masses in a Keplerian orbit , 1963 .