Dense Subsets of Pseudorandom Sets
暂无分享,去创建一个
Madhur Tulsiani | Luca Trevisan | Omer Reingold | Salil P. Vadhan | S. Vadhan | O. Reingold | L. Trevisan | Madhur Tulsiani
[1] Madhur Tulsiani,et al. New Proofs of the Green-Tao-Ziegler Dense Model Theorem: An Exposition , 2008 .
[2] T. Tao,et al. The primes contain arbitrarily long arithmetic progressions , 2004, math/0404188.
[3] T. Tao,et al. The primes contain arbitrarily long polynomial progressions , 2006, math/0610050.
[4] Leonid A. Levin,et al. A Pseudorandom Generator from any One-way Function , 1999, SIAM J. Comput..
[5] Thomas Holenstein,et al. Key agreement from weak bit agreement , 2005, STOC '05.
[6] Y. Kohayakawa. Szemerédi's regularity lemma for sparse graphs , 1997 .
[7] V. Rich. Personal communication , 1989, Nature.
[8] Russell Impagliazzo,et al. Hard-core distributions for somewhat hard problems , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.
[9] E. Szemerédi. On sets of integers containing k elements in arithmetic progression , 1975 .
[10] Avi Wigderson,et al. Computational Analogues of Entropy , 2003, RANDOM-APPROX.
[11] Yoshiharu Kohayakawa,et al. Szemerédi’s Regularity Lemma and Quasi-randomness , 2003 .
[12] W. T. Gowers,et al. Decompositions, approximate structure, transference, and the Hahn–Banach theorem , 2008, 0811.3103.