Compilation for Critically Constrained Knowledge Bases

We show that many "critically constrained" Random 3SAT knowledge bases (KBs) can be compiled into disjunctive normal form easily by using a variant of the "Davis-Putnam" proof procedure. From these compiled KBs we can answer all queries about entailment of conjunctive normal formulas, also easily -- compared to a "brute-force" approach to approximate knowledge compilation into unit clauses for the same KBs. We exploit this fact to develop an aggressive hybrid approach which attempts to compile a KB exactly until a given resource limit is reached, then falls back to approximate compilation into unit clauses. The resulting approach handles all of the critically constrained Random 3SAT KBs with average savings of an order of magnitude over the brute-force approach.

[1]  Roberto J. Bayardo,et al.  Using CSP Look-Back Techniques to Solve Exceptionally Hard SAT Instances , 1996, CP.

[2]  CoudertOlivier Two-level logic minimization: an overview , 1994 .

[3]  Olivier Coudert,et al.  Two-level logic minimization: an overview , 1994, Integr..

[4]  Alvaro Del Val Tractable Databases : How to Make Propositional Unit ResolutionComplete through CompilationAlvaro , 1994 .

[5]  Alex Kean,et al.  An Incremental Method for Generating Prime Implicants/Impicates , 1990, J. Symb. Comput..

[6]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[7]  James M. Crawford,et al.  Implicates and Prime Implicates in Random 3-SAT , 1996, Artif. Intell..

[8]  Richard C. T. Lee,et al.  A New Algorithm for Generating Prime Implicants , 1970, IEEE Transactions on Computers.

[9]  Randal E. Bryant,et al.  Symbolic Boolean manipulation with ordered binary-decision diagrams , 1992, CSUR.

[10]  Pierre Marquis,et al.  Knowledge Compilation Using Theory Prime Implicates , 1995, IJCAI.

[11]  Journal of the Association for Computing Machinery , 1961, Nature.

[12]  Willard Van Orman Quine,et al.  The Problem of Simplifying Truth Functions , 1952 .

[13]  Ron Rymon,et al.  Search through Systematic Set Enumeration , 1992, KR.

[14]  Rina Dechter,et al.  Structure Identification in Relational Data , 1992, Artif. Intell..

[15]  Jon Doyle,et al.  A Truth Maintenance System , 1979, Artif. Intell..

[16]  Bart Selman,et al.  A General Framework for Knowledge Compilation , 1991, PDK.

[17]  James M. Crawford,et al.  Experimental Results on the Crossover Point inSatis ability , 1993 .

[18]  Kenneth D. Forbus,et al.  Building Problem Solvers , 1993 .

[19]  Eugene C. Freuder,et al.  An Efficient Cross Product Representation of the Constraint Satisfaction Problem Search Space , 1992, AAAI.

[20]  David A. McAllester Truth Maintenance , 1990, AAAI.

[21]  George Markowsky,et al.  On the number of prime implicants , 1978, Discret. Math..

[22]  Olivier Coudert,et al.  Implicit and incremental computation of primes and essential primes of Boolean functions , 1992, [1992] Proceedings 29th ACM/IEEE Design Automation Conference.

[23]  Bart Selman,et al.  Forming Concepts for Fast Inference , 1992, AAAI.

[24]  Jean H. Gallier,et al.  Linear-Time Algorithms for Testing the Satisfiability of Propositional Horn Formulae , 1984, J. Log. Program..

[25]  Nripendra N. Biswas,et al.  Minimization of Boolean Functions , 1971, IEEE Transactions on Computers.

[26]  Raymond Reiter,et al.  Foundations of Assumption-based Truth Maintenance Systems: Preliminary Report , 1987, AAAI.

[27]  Peter A Flach Principles of Knowledge Representation and Reasoning: Proceedings ofg the Sixth International Conference (KR'98) , 1998 .

[28]  Olivier Coudert,et al.  A Logically Complete Reasoning Maintenance System Based on a Logical Constraint Solver , 1991, IJCAI.

[29]  Johan de Kleer An Improved Incremental Algorithm for Generating Prime Implicates , 1992, AAAI.

[30]  Toby Walsh,et al.  The Constrainedness of Search , 1996, AAAI/IAAI, Vol. 1.

[31]  Srinivas Devadas Comparing two-level and ordered binary decision diagram representations of logic functions , 1993, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[32]  Randal E. Bryant,et al.  Efficient implementation of a BDD package , 1991, DAC '90.

[33]  Tomás E. Uribe,et al.  Ordered Binary Decision Diagrams and the Davis-Putnam Procedure , 1994, CCL.

[34]  Ingo Wegener,et al.  On the complexity of branching programs and decision trees for clique functions , 1988, JACM.

[35]  Bart Selman,et al.  Knowledge compilation and theory approximation , 1996, JACM.

[36]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[37]  Bart Selman,et al.  Knowledge Compilation using Horn Approximations , 1991, AAAI.

[38]  Samira Sadaoui,et al.  A New Algorithm for Computing Theory Prime Implicates Compilations , 1996, AAAI/IAAI, Vol. 1.

[39]  Bart Selman,et al.  An Empirical Evaluation of Knowledge Compilation by Theory Approximation , 1994, AAAI.

[40]  Shin-ichi Minato,et al.  Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems , 1993, 30th ACM/IEEE Design Automation Conference.

[41]  Alvaro del Val Tractable Databases: How to Make Propositional Unit Resolution Complete Through Compilation , 1994, KR.

[42]  Peter Jackson,et al.  Computing Prime Implicants , 1990, CADE.

[43]  Hector J. Levesque,et al.  Generating Hard Satisfiability Problems , 1996, Artif. Intell..

[44]  Pierre L. Tison,et al.  Generalization of Consensus Theory and Application to the Minimization of Boolean Functions , 1967, IEEE Trans. Electron. Comput..