An energy-stable convex splitting for the phase-field crystal equation

The phase-field crystal equation is solved using a finite element discretization.A mass-conserving, energy-stable, second-order time discretization is developed.The results are proved rigorously, and verified numerically.The implementation is done in PetIGA, an open source isogeometric analysis framework.Three dimensional results showcase the robustness of the method. The phase-field crystal equation, a parabolic, sixth-order and nonlinear partial differential equation, has generated considerable interest as a possible solution to problems arising in molecular dynamics. Nonetheless, solving this equation is not a trivial task, as energy dissipation and mass conservation need to be verified for the numerical solution to be valid. This work addresses these issues, and proposes a novel algorithm that guarantees mass conservation, unconditional energy stability and second-order accuracy in time. Numerical results validating our proofs are presented, and two and three dimensional simulations involving crystal growth are shown, highlighting the robustness of the method.

[1]  H. Löwen A phase-field-crystal model for liquid crystals , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[2]  M. Grant,et al.  Phase-field crystal modeling and classical density functional theory of freezing , 2007 .

[3]  A. Karma,et al.  Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  van der Kg Kristoffer Zee,et al.  Stabilized second‐order convex splitting schemes for Cahn–Hilliard models with application to diffuse‐interface tumor‐growth models , 2014, International journal for numerical methods in biomedical engineering.

[5]  M. Baskes,et al.  Phase-Field Crystal Model for Fe Connected to MEAM Molecular Dynamics Simulations , 2014 .

[6]  William S. Levine,et al.  The Control Handbook , 2010 .

[7]  Victor M. Calo,et al.  On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers , 2014 .

[8]  K. Elder,et al.  Calculations of isothermal elastic constants in the phase-field crystal model , 2013 .

[9]  Cv Clemens Verhoosel,et al.  A phase-field description of dynamic brittle fracture , 2012 .

[10]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[11]  Amy Henderson Squilacote The Paraview Guide , 2008 .

[12]  M. Yussouff,et al.  First-principles order-parameter theory of freezing , 1979 .

[13]  N. Goldenfeld,et al.  Emergence of foams from the breakdown of the phase field crystal model. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Xesús Nogueira,et al.  An unconditionally energy-stable method for the phase field crystal equation , 2012 .

[15]  Utkarsh Ayachit,et al.  The ParaView Guide: A Parallel Visualization Application , 2015 .

[16]  Axel Voigt,et al.  Nucleation and growth by a phase field crystal (PFC) model , 2007 .

[17]  Ju Liu,et al.  Isogeometric analysis of the advective Cahn-Hilliard equation: Spinodal decomposition under shear flow , 2013, J. Comput. Phys..

[18]  Cheng Wang,et al.  Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation , 2009, J. Comput. Phys..

[19]  Timon Rabczuk,et al.  Phase field modelling of stressed grain growth: Analytical study and the effect of microstructural length scale , 2014, J. Comput. Phys..

[20]  Thomas J. R. Hughes,et al.  Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models , 2011, J. Comput. Phys..

[21]  Joel Berry,et al.  Simulation of an atomistic dynamic field theory for monatomic liquids: freezing and glass formation. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Lisandro Dalcin,et al.  PetIGA: High-Performance Isogeometric Analysis , 2013, ArXiv.

[23]  Qun Chen,et al.  Uniqueness and stability of an inverse problem for a phase field model using data from one component , 2013, Comput. Math. Appl..

[24]  G. Tóth,et al.  Polymorphism, crystal nucleation and growth in the phase-field crystal model in 2D and 3D , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[25]  László Gránásy,et al.  Advanced operator splitting-based semi-implicit spectral method to solve the binary phase-field crystal equations with variable coefficients , 2009, J. Comput. Phys..

[26]  T. Ala‐Nissila,et al.  Thermodynamics of bcc metals in phase-field-crystal models. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Martin Grant,et al.  Modeling elasticity in crystal growth. , 2001, Physical review letters.

[28]  Victor M. Calo,et al.  The cost of continuity: A study of the performance of isogeometric finite elements using direct solvers , 2012 .

[29]  Alain Karma,et al.  Phase-field-crystal model for fcc ordering. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Victor M. Calo,et al.  Phase Field Modeling Using PetIGA , 2013, ICCS.

[31]  Travis E. Oliphant,et al.  Python for Scientific Computing , 2007, Computing in Science & Engineering.

[32]  Cheng Wang,et al.  An Energy-Stable and Convergent Finite-Difference Scheme for the Phase Field Crystal Equation , 2009, SIAM J. Numer. Anal..

[33]  Benedikt Wirth,et al.  A simple and efficient scheme for phase field crystal simulation , 2013 .

[34]  T. Ala‐Nissila,et al.  Extended phase diagram of the three-dimensional phase field crystal model , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[35]  T. P. G. Thamburaja,et al.  A multiscale Taylor model-based constitutive theory describing grain growth in polycrystalline cubic metals , 2014 .

[36]  E. Ford,et al.  POLYMORPHISM , 1945, Encyclopedic Dictionary of Archaeology.

[37]  Victor M. Calo,et al.  Solving Nonlinear, High-Order Partial Differential Equations Using a High-Performance Isogeometric Analysis Framework , 2014, CARLA.

[38]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[39]  A. Karma,et al.  Phase-field crystal modeling of equilibrium bcc-liquid interfaces , 2007, 0706.3675.

[40]  Yuan Ma,et al.  An adaptive time-stepping strategy for solving the phase field crystal model , 2013, J. Comput. Phys..

[41]  Badrinarayan P. Athreya,et al.  Using the phase-field crystal method in the multi-scale modeling of microstructure evolution , 2007 .

[42]  A. Voigt,et al.  A phase-field-crystal approach to critical nuclei , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[43]  Nikolas Provatas,et al.  Phase-Field Methods in Materials Science and Engineering , 2010 .

[44]  M. Grant,et al.  Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Victor M. Calo,et al.  The Cost of Continuity: Performance of Iterative Solvers on Isogeometric Finite Elements , 2012, SIAM J. Sci. Comput..

[46]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[47]  E. Asadi,et al.  A Review of Quantitative Phase-Field Crystal Modeling of Solid–Liquid Structures , 2015 .

[48]  V. M. Calo,et al.  Simulation of Engineering Applications Using Isogeometric Analysis , 2008 .