Tunable Coupling Scheme for Implementing High-Fidelity Two-Qubit Gates

The prospect of computational hardware with quantum advantage relies critically on the quality of quantum-gate operations. Imperfect two-qubit gates are a major bottleneck for achieving scalable quantum-information processors. Here, we propose a generalizable and extensible scheme for a two-qubit tunable coupler that controls the qubit-qubit coupling by modulating the coupler frequency. Two-qubit gate operations can be implemented by operating the coupler in the dispersive regime, which is noninvasive to the qubit states. We investigate the performance of the scheme by simulating a universal two-qubit gate on a superconducting quantum circuit, and find that errors from known parasitic effects are strongly suppressed. The scheme is compatible with existing high-coherence hardware, thereby promising a higher gate fidelity with current technologies.

[1]  Jay M. Gambetta,et al.  Universal Gate for Fixed-Frequency Qubits via a Tunable Bus , 2016, 1604.03076.

[2]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[3]  M. Lukin,et al.  Probing many-body dynamics on a 51-atom quantum simulator , 2017, Nature.

[4]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[5]  L. DiCarlo,et al.  Demonstration of two-qubit algorithms with a superconducting quantum processor , 2009, Nature.

[6]  S. Lloyd,et al.  Quantum Coherent Tunable Coupling of Superconducting Qubits , 2007, Science.

[7]  D. DiVincenzo,et al.  Schrieffer-Wolff transformation for quantum many-body systems , 2011, 1105.0675.

[8]  H. Meyer,et al.  Controllable coupling of superconducting flux qubits. , 2006, Physical review letters.

[9]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[10]  D. Yost,et al.  3D integrated superconducting qubits , 2017, 1706.04116.

[11]  John M. Martinis,et al.  Supplementary information for : Overcoming non-markovian noise in quantum systems : How mediocre clocks make good qubits , 2014 .

[12]  Jens Koch,et al.  Universal Stabilization of a Parametrically Coupled Qubit. , 2017, Physical review letters.

[13]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[14]  Christiane P. Koch,et al.  Charting the circuit QED design landscape using optimal control theory , 2016, 1606.08825.

[15]  Michael J. Biercuk,et al.  Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins , 2012, Nature.

[16]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[17]  M. Jacob,et al.  About Les Houches , 2002 .

[18]  Ny,et al.  Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits , 2009, 0910.1118.

[19]  Alexandre Blais,et al.  Quantum information processing with circuit quantum electrodynamics , 2007 .

[20]  Jian-Wei Pan,et al.  10-Qubit Entanglement and Parallel Logic Operations with a Superconducting Circuit. , 2017, Physical review letters.

[21]  J M Gambetta,et al.  Tunable coupling in circuit quantum electrodynamics using a superconducting charge qubit with a V-shaped energy level diagram. , 2011, Physical review letters.

[22]  John M. Martinis,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2015, Nature.

[23]  Nicholas T. Bronn,et al.  Tunable Superconducting Qubits with Flux-Independent Coherence , 2017, 1702.02253.

[24]  Mary Beth Rothwell,et al.  High-coherence hybrid superconducting qubit. , 2010, Physical review letters.

[25]  Blake R. Johnson,et al.  Simple all-microwave entangling gate for fixed-frequency superconducting qubits. , 2011, Physical review letters.

[26]  E. Solano,et al.  Tunable and switchable coupling between two superconducting resonators , 2014, 1405.1969.

[27]  Jens Koch,et al.  Coupling superconducting qubits via a cavity bus , 2007, Nature.

[28]  J. R. Petta,et al.  Scalable gate architecture for a one-dimensional array of semiconductor spin qubits , 2016, 1607.07025.

[29]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[30]  A N Cleland,et al.  Qubit Architecture with High Coherence and Fast Tunable Coupling. , 2014, Physical review letters.

[31]  M. W. Johnson,et al.  Quantum annealing with manufactured spins , 2011, Nature.

[32]  J. Martinis,et al.  Fast adiabatic qubit gates using only σ z control , 2014, 1402.5467.

[33]  C. Monroe,et al.  Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator , 2017, Nature.

[34]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[35]  John Clarke,et al.  Solid-State Qubits with Current-Controlled Coupling , 2006, Science.

[36]  M S Allman,et al.  rf-SQUID-mediated coherent tunable coupling between a superconducting phase qubit and a lumped-element resonator. , 2010, Physical review letters.

[37]  J. Clarke,et al.  The flux qubit revisited to enhance coherence and reproducibility , 2015, Nature Communications.

[38]  M. W. Johnson,et al.  Sign- and magnitude-tunable coupler for superconducting flux qubits , 2006, cond-mat/0608253.

[39]  E. Arimondo,et al.  Rydberg excitations in Bose-Einstein condensates in quasi-one-dimensional potentials and optical lattices. , 2011, Physical review letters.

[40]  D. Rosenberg,et al.  Coherent Coupled Qubits for Quantum Annealing , 2017, 1701.06544.