Panoptes: web‐based exploration of large scale genome variation data

Motivation The size and complexity of modern large‐scale genome variation studies demand novel approaches for exploring and sharing the data. In order to unlock the potential of these data for a broad audience of scientists with various areas of expertise, a unified exploration framework is required that is accessible, coherent and user‐friendly. Results Panoptes is an open‐source software framework for collaborative visual exploration of large‐scale genome variation data and associated metadata in a web browser. It relies on technology choices that allow it to operate in near real‐time on very large datasets. It can be used to browse rich, hybrid content in a coherent way, and offers interactive visual analytics approaches to assist the exploration. We illustrate its application using genome variation data of Anopheles gambiae, Plasmodium falciparum and Plasmodium vivax. Availability and implementation Freely available at https://github.com/cggh/panoptes, under the GNU Affero General Public License. Contact paul.vauterin@gmail.com

[1]  Alistair Miles,et al.  Natural diversity of the malaria vector Anopheles gambiae , 2016, bioRxiv.

[2]  Sanjay Ghemawat,et al.  MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.

[3]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[4]  Wolfgang Berger,et al.  A Multi-Threading Architecture to Support Interactive Visual Exploration , 2009, IEEE Transactions on Visualization and Computer Graphics.

[5]  Daniel H. Huson,et al.  Dendroscope: An interactive viewer for large phylogenetic trees , 2007, BMC Bioinformatics.

[6]  Samuel A. Assefa,et al.  VarB: a variation browsing and analysis tool for variants derived from next-generation sequencing data , 2012, Bioinform..

[7]  Gil McVean,et al.  Indels, structural variation, and recombination drive genomic diversity in Plasmodium falciparum , 2016, Genome research.

[8]  Jeffrey Heer,et al.  The Effects of Interactive Latency on Exploratory Visual Analysis , 2014, IEEE Transactions on Visualization and Computer Graphics.

[9]  Yidong Cui,et al.  Web visualization of distributed network measurement system based on HTML5 , 2012, 2012 IEEE 2nd International Conference on Cloud Computing and Intelligence Systems.

[10]  Heinrich Magnus Manske,et al.  LookSeq: a browser-based viewer for deep sequencing data. , 2009, Genome research.

[11]  Daniel A. Keim,et al.  Challenges in Visual Data Analysis , 2006, Tenth International Conference on Information Visualisation (IV'06).

[12]  Taane G. Clark,et al.  A global network for investigating the genomic epidemiology of malaria , 2008, Nature.

[13]  Ge Gao,et al.  A brief introduction to web-based genome browsers , 2013, Briefings Bioinform..

[14]  Héctor Corrada Bravo,et al.  Epiviz: interactive visual analytics for functional genomics data , 2014, Nature Methods.

[15]  Robert Buels,et al.  JBrowse: A Next-Generation Genome Browser , 2014 .

[16]  Martin L. Kersten,et al.  MonetDB: Two Decades of Research in Column-oriented Database Architectures , 2012, IEEE Data Eng. Bull..

[17]  Thomas S Deisboeck,et al.  Life Sciences and the web: a new era for collaboration , 2008, Molecular systems biology.

[18]  Alistair Miles,et al.  Genomic analysis of local variation and recent evolution in Plasmodium vivax , 2016, Nature Genetics.