Non-destructive Measurement of Moisture Distribution in Wood during Drying Using Digital X-ray Microscopy

The objective of this study was to develop a nondestructive method by which moisture distribution in wood during drying could be predicted. A newly developed digital X-ray microscope was used to measure the moisture content of wood and its accuracy and resolution was evaluated compared to the classic oven-dry method. Small green wood specimens of Sugi (Cryptomeria japonica D. Don) were cut and dried under constant temperature and humidity. As the weight was decreasing during drying, X-ray microscope images of cross section were obtained. From these digital images and specimen weight, the moisture content during drying was measured by the two methods. After the shrinkage of the specimen was canceled, the standard error achieved finally was about 1% moisture content within the experimental range. As the image was divided into small subimages, the clear moisture distribution can be seen. It was found that the image divided into 32 × 32 subimages in each size of 0.625 × 0.625 mm might be valid to determine the moisture distribution, and that the drying rate in early wood is larger than in late wood.