Phase Structure, Microstructure and Dielectric Properties of (K0.5Na0.5)NbO3‐LaFeO3 High‐Temperature Dielectric Ceramics

The (1-x)(K0.5Na0.5)NbO3-xLaFeO3 (abbreviated as (1-x)KNN-xLF, x = 0–0.03) ceramics were synthesized by the conventional solid-state sintering method. X-ray diffraction analysis shows that the phase structure of the (1-x)KNN-xLF ceramics transfers from orthorhombic to pseudocubic with increasing the LF content. The SEM studies reveal that a small amount of LF, as a grain growth inhibitor, has an evident effect on grain size reduction. The (1-x)KNN-xLF (x = 0.02) ceramics show high permittivity maximum (near 2000) and low dielectric loss (<5%) in the temperature range of 100–400°C, and the capacitance variation (ΔC/C150°C) is keeping within ±15%, indicating the potential application for the high-temperature capacitors.

[1]  Chunchang Wang,et al.  Polaronic relaxation in LaFeO3 , 2012 .

[2]  W. Jo,et al.  A High-Temperature-Capacitor Dielectric Based on K0.5Na0.5NbO3-Modified Bi1/2Na1/2TiO3–Bi1/2K1/2TiO3 , 2012 .

[3]  Longtu Li,et al.  Nb‐Modified 0.9BaTiO3–0.1(Bi0.5Na0.5)TiO3 Ceramics for X9R High‐Temperature Dielectrics Application Prepared by Coating Method , 2012 .

[4]  I. Reaney,et al.  BaTiO3–Bi(Zn1/2Ti1/2)O3–BiScO3 Ceramics for High‐Temperature Capacitor Applications , 2012 .

[5]  Hyoung-Su Han,et al.  Coexistence of ergodicity and nonergodicity in LaFeO3-modified Bi1/2(Na0.78K0.22)1/2TiO3 relaxors , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  Suyoun Lee,et al.  Ferroelectric relaxor properties of (1 − x)K0.5Na0.5NbO3–xBa0.5Ca0.5TiO3 ceramics , 2012 .

[7]  Jianguo Zhu,et al.  Microstructure and electrical properties of relaxor (1 − x)[(K0.5Na0.5)0.95Li0.05](Nb0.95Sb0.05)O3–xBaTiO3 piezoelectric ceramics , 2012 .

[8]  Longtu Li,et al.  Effects of CaZrO3 on X8R Nonreducible BaTiO3‐BasedDielectric Ceramics , 2011 .

[9]  R. Wayne Johnson,et al.  Packaging Technology for Electronic Applications in Harsh High-Temperature Environments , 2011, IEEE Transactions on Industrial Electronics.

[10]  T. Shrout,et al.  High temperature capacitors using a BiScO3-BaTiO3-(K1/2Bi1/2)TiO3 ternary system , 2011 .

[11]  Hong-Mei Zhang,et al.  The effects of Bi(Mg2/3Nb1/3)O3 on piezoelectric and ferroelectric properties of K0.5Na0.5NbO3 lead-free piezoelectric ceramics , 2011 .

[12]  W. Jo,et al.  Lead-free high-temperature dielectrics with wide operational range , 2011 .

[13]  Shantao Zhang,et al.  Crystal structures and electrical properties of (1 − x)K0.5Na0.5NbO3–xBi0.8La0.2FeO3 lead-free ceramics , 2011 .

[14]  M. Siddique,et al.  Origin of colossal dielectric response in LaFeO3 , 2011 .

[15]  Xinru Wang,et al.  Study on the microstructure and dielectric properties of X9R ceramics based on BaTiO3 , 2011 .

[16]  S. Qu,et al.  New Lead-Free Relaxor Ferroelectrics Derived from (K0.5Na0.5)NbO3 for High Temperature Applications , 2010 .

[17]  B. Tang,et al.  High-temperature stable dielectrics in Mn-modified (1-x) Bi0.5Na0.5TiO3-xCaTiO3 ceramics , 2010 .

[18]  Sharmistha Ghosh,et al.  Multiferroic behavior of lanthanum orthoferrite (LaFeO3) , 2010 .

[19]  Shuren Zhang,et al.  Preparation and modification of high Curie point BaTiO3-based X9R ceramics , 2010 .

[20]  Q. Yin,et al.  Relaxor behavior and dielectric properties of (La, Ta)-modified (K0.5Na0.5)NbO3 lead-free ceramics , 2009 .

[21]  S. Trolier-McKinstry,et al.  High‐Energy Density Capacitors Utilizing 0.7 BaTiO3–0.3 BiScO3 Ceramics , 2009 .

[22]  Changku Sun,et al.  Low-Temperature Sintering Barium Titanate-Based X8R Ceramics with Nd2O3 Dopant and ZnO–B2O3 Flux Agent , 2009 .

[23]  Bruno Allard,et al.  State of the art of high temperature power electronics , 2009 .

[24]  S. Qu,et al.  Phase structure, dielectric properties, and relaxor behavior of (K0.5Na0.5)NbO3-(Ba0.5Sr0.5)TiO3 lead-free solid solution for high temperature applications , 2009 .

[25]  C. Yuan,et al.  Dielectric relaxor behavior of A-site complex ferroelectrics of Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3–BiFeO3 , 2009 .

[26]  Namchul Kim,et al.  High‐Temperature Dielectrics in the BiScO3–BaTiO3–(K1/2Bi1/2)TiO3 Ternary System , 2009 .

[27]  R. Zuo,et al.  Sintering and electrical properties of Na0.5K0.5NbO3 ceramics modified with lanthanum and iron oxides , 2009 .

[28]  S. Trolier-McKinstry,et al.  Weakly Coupled Relaxor Behavior of BaTiO3–BiScO3 Ceramics , 2009 .

[29]  R. Chatterjee,et al.  Magnetization induced dielectric anomaly in multiferroic LaFeO3–PbTiO3 solid solution , 2008 .

[30]  S. Qu,et al.  Sintering Characteristic, Microstructure, and Dielectric Relaxor Behavior of (K0.5Na0.5)NbO3–(Bi0.5Na0.5)TiO3 Lead-Free Ceramics , 2008 .

[31]  S. Qu,et al.  High Tm lead-free relaxor ferroelectrics with broad temperature usage range: 0.04BiScO3−0.96(K0.5Na0.5)NbO3 , 2008 .

[32]  S. Qu,et al.  Design and electrical properties’ investigation of (K0.5Na0.5)NbO3–BiMeO3 lead-free piezoelectric ceramics , 2008 .

[33]  L. Del Castillo,et al.  Reliability assessment of high temperature electronics and packaging technologies for Venus mission , 2008, 2008 IEEE International Reliability Physics Symposium.

[34]  T. Grande,et al.  Mechanical properties of LaFeO3 ceramics , 2005 .

[35]  Yiping Guo,et al.  Ferroelectric-relaxor behavior of (Na0.5K0.5)NbO3-based ceramics , 2004 .

[36]  Yiping Guo,et al.  Structure and Electrical Properties of Lead-Free (Na0.5K0.5)NbO3-BaTiO3 Ceramics , 2004 .

[37]  M. Kosec,et al.  Relaxorlike dielectric properties and history-dependent effects in the lead-free K0.5Na0.5NbO3–SrTiO3 ceramic system , 2004 .

[38]  R.W. Johnson,et al.  The changing automotive environment: high-temperature electronics , 2004, IEEE Transactions on Electronics Packaging Manufacturing.

[39]  M. Kosec,et al.  New lead-free relaxors based on the K_0.5Na_0.5NbO_3–SrTiO_3 solid solution , 2004 .

[40]  Hiroshi Kishi,et al.  Base-Metal Electrode-Multilayer Ceramic Capacitors: Past, Present and Future Perspectives , 2003 .

[41]  L. Egerton,et al.  Piezoelectric and Dielectric Properties of Ceramics in the System Potassium—Sodium Niobate , 1959 .