Bernstein polynomials and learning theory
暂无分享,去创建一个
[1] Jürgen Forster. A linear lower bound on the unbounded error probabilistic communication complexity , 2002, J. Comput. Syst. Sci..
[2] Martin Aigner,et al. Diskrete Mathematik , 1993, Vieweg Studium Aufbaukurs Mathematik = Advanced lectures in mathematics.
[3] V. Totik. APPROXIMATION BY BERNSTEIN POLYNOMIALS , 1994 .
[4] Thomas Sauer,et al. The Genuine Bernstein-Durrmeyer Operator on a Simplex , 1994 .
[5] Thomas M. Cover. Admissibility properties or Gilbert's encoding for unknown source probabilities (Corresp.) , 1972, IEEE Trans. Inf. Theory.
[6] Xinlong Zhou,et al. The Lower Estimate for Linear Positive Operators (II) , 1994 .
[7] George G. Lorentz,et al. Deferred Bernstein polynomials , 1951 .
[8] T. Cover. Admissibility Properties of Gilbert ’ s Encoding for Unknown Source Probabilities , 1998 .
[9] Hans Ulrich Simon,et al. How to Achieve Minimax Expected Kullback-Leibler Distance from an Unknown Finite Distribution , 2002, ALT.
[10] George G. Lorentz,et al. Inverse Theorems for Bernstein Polynomials , 1997 .
[11] Rafail E. Krichevskiy,et al. Laplace's Law of Succession and Universal Encoding , 1998, IEEE Trans. Inf. Theory.
[12] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .
[13] Yuan Xu,et al. K-moduli, moduli of smoothness, and Bernstein polynomials on a simplex , 1991 .
[14] Manfred K. Warmuth,et al. Relative Expected Instantaneous Loss Bounds , 2000, J. Comput. Syst. Sci..
[15] Xinlong Zhou,et al. The lower estimate for linear positive operators, I , 1995 .