Estimation of Ricean K parameter and local average SNR from noisy correlated channel samples

The problem of estimating the K parameter and the local average signal-to-noise ratio in a noisy Ricean fading channel is studied. Unlike most previous estimators where independent channel samples are assumed, in this paper, novel estimators that assume correlated channel samples are proposed. Both data-aided and non-data-aided designs are considered. The performances of the new estimators are examined. Several design issues are discussed. Numerical results are presented to show their good performances in a realistic Ricean fading channel

[1]  Lajos Hanzo,et al.  Mobile Radio Communications: Second and Third Generation Cellular and WATM Systems: 2nd , 1999 .

[2]  Mohamed-Slim Alouini,et al.  Digital Communication Over Fading Channels: A Unified Approach to Performance Analysis , 2000 .

[3]  Norman C. Beaulieu,et al.  Estimators using noisy channel samples for fading distribution parameters , 2005, IEEE Transactions on Communications.

[4]  Gordon L. Stuber,et al.  Principles of mobile communication (2nd ed.) , 2001 .

[5]  James K. Cavers Optimized use of diversity modes in transmitter diversity systems , 1999, 1999 IEEE 49th Vehicular Technology Conference (Cat. No.99CH36363).

[6]  P.T. Nielsen Mean power of the components of a Rice fading signal determined from measurements , 1978, Proceedings of the IEEE.

[7]  Donald C. Cox,et al.  Speed estimation in wireless systems using wavelets , 1999, IEEE Trans. Commun..

[8]  Norman C. Beaulieu,et al.  Micro- and macrodiversity NCFSK (DPSK) on shadowed Nakagami-fading channels , 1994, IEEE Trans. Commun..

[9]  A. Viterbi CDMA: Principles of Spread Spectrum Communication , 1995 .

[10]  J. Cavers An analysis of pilot symbol assisted modulation for Rayleigh fading channels (mobile radio) , 1991 .

[11]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[12]  Mohamed-Slim Alouini,et al.  Average bit error probability performance for optimum diversity combining of noncoherent FSK over Rayleigh fading channels , 2003, IEEE International Conference on Communications, 2003. ICC '03..

[13]  Mohamed-Slim Alouini,et al.  Estimation of Nakagami-m fading channel parameters with application to optimized transmitter diversity systems , 2003, IEEE Trans. Wirel. Commun..

[14]  Mohamed-Slim Alouini,et al.  Digital Communication over Fading Channels: Simon/Digital Communications 2e , 2004 .

[15]  Laurence B. Milstein,et al.  SNR estimation in Nakagami-m fading with diversity combining and its application to turbo decoding , 2002, IEEE Trans. Commun..

[16]  K. Anim-Appiah On generalized covariance-based velocity estimation , 1999 .

[17]  Boualem Boashash,et al.  Ricean K-factor estimation in mobile communication systems , 2004, IEEE Communications Letters.

[18]  M. M. Peritsky Statistical estimation of mean signal strength in a Rayleigh-fading environment , 1973 .

[19]  Young-Chai Ko,et al.  Estimation of the local mean power over Nakagami fading channels , 2001, 12th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. PIMRC 2001. Proceedings (Cat. No.01TH8598).

[20]  F. Tufvesson,et al.  Statistical evaluation of outdoor-to-indoor office MIMO measurements at 5.2 GHz , 2005, 2005 IEEE 61st Vehicular Technology Conference.

[21]  Jack M. Holtzman,et al.  Adaptive averaging methodology for handoffs in cellular systems , 1995 .

[22]  S. G. Wilson,et al.  Design and analysis of turbo codes on Rayleigh fading channels , 1996, Proceedings of GLOBECOM'96. 1996 IEEE Global Telecommunications Conference.

[23]  Ali Abdi,et al.  The Ricean K factor: estimation and performance analysis , 2003, IEEE Trans. Wirel. Commun..

[24]  M. D. Austin,et al.  Velocity adaptive handoff algorithms for microcellular systems , 1994 .

[25]  W. Lindsey,et al.  Optimum Performance of Self-Adaptive Systems Operating Through a Rayleigh-Fading Medium , 1963 .

[26]  Laurence B. Milstein,et al.  Performance of noncoherent turbo detection on Rayleigh fading channels , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[27]  Norman C. Beaulieu,et al.  Maximum likelihood estimation of local average SNR in Rician fading channels , 2005, IEEE Communications Letters.

[28]  Larry J. Greenstein,et al.  Moment-method estimation of the Ricean K-factor , 1999, IEEE Communications Letters.

[29]  Young-Chai Ko,et al.  SNR estimation in decibel domain over communication channels , 2004, 2004 IEEE Wireless Communications and Networking Conference (IEEE Cat. No.04TH8733).

[30]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .

[31]  Kushal K. Talukdar,et al.  Estimation of the parameters of the Rice distribution , 1991 .

[32]  John G. Proakis,et al.  Digital Communications , 1983 .

[33]  Ali Abdi,et al.  On the estimation of the K parameter for the Rice fading distribution , 2001, IEEE Communications Letters.

[34]  D. Wong,et al.  Estimating local mean signal power level in a Rayleigh fading environment , 1999 .

[35]  Jon W. Mark,et al.  Mobile speed estimation based on average fade slope duration , 2004, IEEE Transactions on Communications.

[36]  M. M. Peritsky Statistical Estimation of Mean Signal Strength in a Rayleigh-Fading Environment , 1973, IEEE Trans. Commun..