The derivation of swarming models: Mean-field limit and Wasserstein distances

[1]  Nicolas Fournier,et al.  Propagation of chaos for the 2D viscous vortex model , 2012, 1212.1437.

[2]  Isabelle Gallagher,et al.  From Newton to Boltzmann: Hard Spheres and Short-range Potentials , 2012, 1208.5753.

[3]  S. Mischler,et al.  On Kac's chaos and related problems , 2012, 1205.4518.

[4]  M. Bodnar,et al.  Friction dominated dynamics of interacting particles locally close to a crystallographic lattice , 2013 .

[5]  Jan Haskovec,et al.  Flocking dynamics and mean-field limit in the Cucker–Smale-type model with topological interactions , 2013, 1301.0925.

[6]  J. Carrillo,et al.  Dimensionality of Local Minimizers of the Interaction Energy , 2012, 1210.6795.

[7]  Lorenzo Pareschi,et al.  Modeling of self-organized systems interacting with a few individuals: From microscopic to macroscopic dynamics , 2012, Appl. Math. Lett..

[8]  J. A. Carrillo,et al.  A new interaction potential for swarming models , 2012, 1204.2567.

[9]  J. Carrillo,et al.  Aggregation Equation with Growing at Infinity Attractive-repulsive Potentials , 2012 .

[10]  Andrea L. Bertozzi,et al.  AGGREGATION AND SPREADING VIA THE NEWTONIAN POTENTIAL: THE DYNAMICS OF PATCH SOLUTIONS , 2012 .

[11]  V. Isaeva Self-organization in biological systems , 2012, Biology Bulletin.

[12]  W. Marsden I and J , 2012 .

[13]  José A. Carrillo,et al.  Confinement in nonlocal interaction equations , 2012 .

[14]  M. Burger,et al.  Continuous limit of a crowd motion and herding model: Analysis and numerical simulations , 2011 .

[15]  J. A. Carrillo,et al.  Nonlocal interactions by repulsive–attractive potentials: Radial ins/stability , 2011, 1109.5258.

[16]  Pierre-Emmanuel Jabin,et al.  Particles approximations of Vlasov equations with singular forces : Propagation of chaos , 2011, 1107.3821.

[17]  S. Mischler,et al.  Kac’s program in kinetic theory , 2011, Inventiones mathematicae.

[18]  A. Bertozzi,et al.  Stability of ring patterns arising from two-dimensional particle interactions. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Emmanuel Boissard Simple Bounds for the Convergence of Empirical and Occupation Measures in 1-Wasserstein Distance , 2011, 1103.3188.

[20]  J. Carrillo,et al.  Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations , 2011 .

[21]  T. Laurent,et al.  Lp theory for the multidimensional aggregation equation , 2011 .

[22]  Jos'e Antonio Carrillo,et al.  Stochastic Mean-Field Limit: Non-Lipschitz Forces & Swarming , 2010, 1009.5166.

[23]  E. Boissard Problèmes d'interaction discret-continu et distances de Wasserstein , 2011 .

[24]  A. Bertozzi,et al.  Stability of ring patterns arising from 2 D particle interactions , 2011 .

[25]  Reinhard Illner,et al.  ANALYSIS AND SIMULATIONS OF A REFINED FLOCKING AND SWARMING MODEL OF CUCKER-SMALE TYPE , 2011 .

[26]  Jesús Rosado,et al.  COMPORTAMIENTO COLECTIVO DE ANIMALES "SWARMING" Y PATRONES COMPLEJOS COLLECTIVE BEHAVIOR OF ANIMALS: SWARMING AND COMPLEx PATTERNS , 2010 .

[27]  Axel Klar,et al.  SELF-PROPELLED INTERACTING PARTICLE SYSTEMS WITH ROOSTING FORCE , 2010 .

[28]  Jesús Rosado,et al.  Asymptotic Flocking Dynamics for the Kinetic Cucker-Smale Model , 2010, SIAM J. Math. Anal..

[29]  M. Hauray WASSERSTEIN DISTANCES FOR VORTICES APPROXIMATION OF EULER-TYPE EQUATIONS , 2009 .

[30]  Jos'e A. Carrillo,et al.  A well-posedness theory in measures for some kinetic models of collective motion , 2009, 0907.3901.

[31]  Seung-Yeal Ha,et al.  A simple proof of the Cucker-Smale flocking dynamics and mean-field limit , 2009 .

[32]  J. Carrillo,et al.  Double milling in self-propelled swarms from kinetic theory , 2009 .

[33]  Pedro Elosegui,et al.  Extension of the Cucker-Smale Control Law to Space Flight Formations , 2009 .

[34]  Andrea L. Bertozzi,et al.  Blow-up in multidimensional aggregation equations with mildly singular interaction kernels , 2009 .

[35]  Lamia Youseff,et al.  Discrete and continuous models of the dynamics of pelagic fish: Application to the capelin , 2008, Math. Comput. Simul..

[36]  E. Tadmor,et al.  From particle to kinetic and hydrodynamic descriptions of flocking , 2008, 0806.2182.

[37]  Leah Edelstein-Keshet,et al.  Minimal mechanisms for school formation in self-propelled particles , 2008 .

[38]  Thierry Champion,et al.  The ∞-Wasserstein Distance: Local Solutions and Existence of Optimal Transport Maps , 2008, SIAM J. Math. Anal..

[39]  C. Hemelrijk,et al.  Self-Organized Shape and Frontal Density of Fish Schools , 2008 .

[40]  Thomas Laurent,et al.  Local and Global Existence for an Aggregation Equation , 2007 .

[41]  Andrea L. Bertozzi,et al.  Finite-Time Blow-up of Solutions of an Aggregation Equation in Rn , 2007 .

[42]  Felipe Cucker,et al.  Emergent Behavior in Flocks , 2007, IEEE Transactions on Automatic Control.

[43]  M A Lewis,et al.  Complex spatial group patterns result from different animal communication mechanisms , 2007, Proceedings of the National Academy of Sciences.

[44]  Camillo De Lellis,et al.  The Euler equations as a differential inclusion , 2007, math/0702079.

[45]  A. Bertozzi,et al.  Self-propelled particles with soft-core interactions: patterns, stability, and collapse. , 2006, Physical review letters.

[46]  C. Villani,et al.  Contractions in the 2-Wasserstein Length Space and Thermalization of Granular Media , 2006 .

[47]  A. Bertozzi,et al.  A Nonlocal Continuum Model for Biological Aggregation , 2005, Bulletin of mathematical biology.

[48]  R. McCann STABLE ROTATING BINARY STARS AND FLUID IN A TUBE , 2006 .

[49]  C. Villani,et al.  Quantitative Concentration Inequalities for Empirical Measures on Non-compact Spaces , 2005, math/0503123.

[50]  I. Couzin,et al.  Effective leadership and decision-making in animal groups on the move , 2005, Nature.

[51]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[52]  G. Burton TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .

[53]  Andrea L. Bertozzi,et al.  Swarming Patterns in a Two-Dimensional Kinematic Model for Biological Groups , 2004, SIAM J. Appl. Math..

[54]  C. Villani,et al.  Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates , 2003 .

[55]  A. Mogilner,et al.  Mathematical Biology Mutual Interactions, Potentials, and Individual Distance in a Social Aggregation , 2003 .

[56]  C. Villani Topics in Optimal Transportation , 2003 .

[57]  François Golse,et al.  The mean-field limit for the dynamics of large particle systems , 2003 .

[58]  Akira Ogawa,et al.  Vorticity and Incompressible Flow. Cambridge Texts in Applied Mathematics , 2002 .

[59]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[60]  W. Rappel,et al.  Self-organization in systems of self-propelled particles. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  A. Majda,et al.  Vorticity and incompressible flow , 2001 .

[62]  Neha Bhooshan,et al.  The Simulation of the Movement of Fish Schools , 2001 .

[63]  A. Mogilner,et al.  A non-local model for a swarm , 1999 .

[64]  L. Edelstein-Keshet,et al.  Complexity, pattern, and evolutionary trade-offs in animal aggregation. , 1999, Science.

[65]  C. Graham,et al.  Stochastic particle approximations for generalized Boltzmann models and convergence estimates , 1997 .

[66]  Steven Schochet,et al.  THE POINT-VORTEX METHOD FOR PERIODIC WEAK SOLUTIONS OF THE 2-D EULER EQUATIONS , 1996 .

[67]  S. Méléard Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models , 1996 .

[68]  Vicsek,et al.  Novel type of phase transition in a system of self-driven particles. , 1995, Physical review letters.

[69]  Mario Pulvirenti,et al.  Mathematical Theory of Incompressible Nonviscous Fluids , 1993 .

[70]  H. Spohn Large Scale Dynamics of Interacting Particles , 1991 .

[71]  A. Sznitman Topics in propagation of chaos , 1991 .

[72]  Thomas Y. Hou,et al.  Convergence of the point vortex method for the 2-D euler equations , 1990 .

[73]  조준학,et al.  Growth of human bronchial epithelial cells at an air-liquid interface alters the response to particle exposure , 2013, Particle and Fibre Toxicology.

[74]  Hirofumi Osada,et al.  Propagation of chaos for the two dimensional Navier-Stokes equation , 1986 .

[75]  C. Givens,et al.  A class of Wasserstein metrics for probability distributions. , 1984 .

[76]  Helmut Neunzert,et al.  An introduction to the nonlinear Boltzmann-Vlasov equation , 1984 .

[77]  I. Aoki A simulation study on the schooling mechanism in fish. , 1982 .

[78]  W. Braun,et al.  The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles , 1977 .

[79]  Henry P. McKean,et al.  The central limit theorem for Carleman’s equation , 1975 .

[80]  O. Lanford Time evolution of large classical systems , 1975 .

[81]  H. McKean An exponential formula for solving Boltzmann's equation for a Maxwellian gas* , 1967 .

[82]  C. Chou The Vlasov equations , 1965 .

[83]  M. Kac Foundations of Kinetic Theory , 1956 .