The effect of azithromycin on sputum inflammatory markers in bronchiectasis

[1]  F. Blasi,et al.  Neutrophil extracellular traps, disease severity, and antibiotic response in bronchiectasis: an international, observational, multicohort study. , 2021, The Lancet. Respiratory medicine.

[2]  W. Boersma,et al.  Long-term macrolide antibiotics for the treatment of bronchiectasis in adults: an individual participant data meta-analysis. , 2019, The Lancet. Respiratory medicine.

[3]  W. Boersma,et al.  Aetiology and disease severity are among the determinants of quality of life in bronchiectasis , 2019, The clinical respiratory journal.

[4]  J. Chalmers,et al.  Bronchiectasis: new therapies and new perspectives. , 2018, The Lancet. Respiratory medicine.

[5]  Christoph Gerlinger,et al.  Characterization of the “Frequent Exacerbator Phenotype” in Bronchiectasis , 2018, American journal of respiratory and critical care medicine.

[6]  L. Fairclough,et al.  Prophylactic Antibiotic Use in COPD and the Potential Anti-Inflammatory Activities of Antibiotics , 2018, Respiratory Care.

[7]  N. Curtis,et al.  The Immunomodulatory Effects of Macrolides—A Systematic Review of the Underlying Mechanisms , 2018, Front. Immunol..

[8]  A. Torres,et al.  The BRICS (Bronchiectasis Radiologically Indexed CT Score): A Multicenter Study Score for Use in Idiopathic and Postinfective Bronchiectasis , 2017, Chest.

[9]  L. Bjermer,et al.  Inflammation and chronic colonization of Haemophilus influenzae in sputum in COPD patients related to the degree of emphysema and bronchiectasis in high-resolution computed tomography , 2017, International journal of chronic obstructive pulmonary disease.

[10]  S. Loukides,et al.  The role of non‐invasive modalities for assessing inflammation in patients with non‐cystic fibrosis bronchiectasis , 2017, Cytokine.

[11]  Jeremy S. Brown,et al.  The heterogeneity of systemic inflammation in bronchiectasis. , 2017, Respiratory medicine.

[12]  S. Marshall,et al.  Neutrophil Elastase Activity Is Associated with Exacerbations and Lung Function Decline in Bronchiectasis , 2017, American journal of respiratory and critical care medicine.

[13]  D. Bilton,et al.  Pseudomonas aeruginosa adaptation and diversification in the non-cystic fibrosis bronchiectasis lung , 2017, European Respiratory Journal.

[14]  J. Laffey,et al.  Multidimensional severity assessment in bronchiectasis: an analysis of seven European cohorts , 2016, Thorax.

[15]  Jeremy S. Brown,et al.  Lung function, symptoms and inflammation during exacerbations of non-cystic fibrosis bronchiectasis: a prospective observational cohort study , 2015, Respiratory Research.

[16]  Xiaozhen Zheng,et al.  Effect of Low-Dose, Long-Term Roxithromycin on Airway Inflammation and Remodeling of Stable Noncystic Fibrosis Bronchiectasis , 2014, Mediators of inflammation.

[17]  Stefano Aliberti,et al.  The bronchiectasis severity index. An international derivation and validation study. , 2014, American journal of respiratory and critical care medicine.

[18]  A. Hill,et al.  Mechanisms of immune dysfunction and bacterial persistence in non-cystic fibrosis bronchiectasis. , 2013, Molecular immunology.

[19]  W. Boersma,et al.  Effect of azithromycin maintenance treatment on infectious exacerbations among patients with non-cystic fibrosis bronchiectasis: the BAT randomized controlled trial. , 2013, JAMA.

[20]  M. McGuckin,et al.  Effect of long-term, low-dose erythromycin on pulmonary exacerbations among patients with non-cystic fibrosis bronchiectasis: the BLESS randomized controlled trial. , 2013, JAMA.

[21]  N. Karalus,et al.  Azithromycin for prevention of exacerbations in non-cystic fibrosis bronchiectasis (EMBRACE): a randomised, double-blind, placebo-controlled trial , 2012, The Lancet.

[22]  P. Burgel,et al.  Pseudomonas aeruginosa induces vascular endothelial growth factor synthesis in airway epithelium in vitro and in vivo , 2011, European Respiratory Journal.

[23]  W. Boersma,et al.  Immunomodulatory Effects of Macrolide Antibiotics – Part 1: Biological Mechanisms , 2010, Respiration.

[24]  E. Lillehoj,et al.  Interleukin-8 Production by Human Airway Epithelial Cells in Response to Pseudomonas aeruginosa Clinical Isolates Expressing Type a or Type b Flagellins , 2010, Clinical and Vaccine Immunology.

[25]  S. Johnston,et al.  Azithromycin induces anti-viral responses in bronchial epithelial cells , 2010, European Respiratory Journal.

[26]  U. Ozcelik,et al.  Effects of claritromycin on inflammatory parameters and clinical conditions in children with bronchiectasis 1 , 2006, Journal of clinical pharmacy and therapeutics.

[27]  J. Hankinson,et al.  Standardisation of spirometry , 2005, European Respiratory Journal.

[28]  C. Agustí,et al.  Bronchial inflammation and colonization in patients with clinically stable bronchiectasis. , 2001, American journal of respiratory and critical care medicine.

[29]  R. Lutter,et al.  Airway inflammation in nonobstructive and obstructive chronic bronchitis with chronic haemophilus influenzae airway infection. Comparison with noninfected patients with chronic obstructive pulmonary disease. , 2000, American journal of respiratory and critical care medicine.

[30]  Wai Lam,et al.  A pilot study of low-dose erythromycin in bronchiectasis. , 1999, The European respiratory journal.

[31]  P. Jones,et al.  Validation of the St. George's Respiratory Questionnaire in bronchiectasis. , 1997, American journal of respiratory and critical care medicine.

[32]  A. Hill,et al.  Non-cystic fibrosis bronchiectasis. , 2009, Clinical medicine.

[33]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[34]  P. Cole Inflammation: a two-edged sword--the model of bronchiectasis. , 1986, European journal of respiratory diseases. Supplement.