Single-Cell RNA-Sequencing-Based CRISPRi Screening Resolves Molecular Drivers of Early Human Endoderm Development

[1]  E. Bikoff,et al.  Combinatorial Smad2/3 Activities Downstream of Nodal Signaling Maintain Embryonic/Extra-Embryonic Cell Identities during Lineage Priming , 2018, Cell reports.

[2]  Ping Xu,et al.  A Single‐Cell Transcriptomic Atlas of Thymus Organogenesis Resolves Cell Types and Developmental Maturation , 2018, Immunity.

[3]  K. Plath,et al.  Identification and Single-Cell Functional Characterization of an Endodermally Biased Pluripotent Substate in Human Embryonic Stem Cells , 2018, Stem cell reports.

[4]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[5]  David R. Kelley,et al.  Genetic determinants and epigenetic effects of pioneer factor occupancy , 2018, Nature Genetics.

[6]  Daniel S. Day,et al.  YY1 Is a Structural Regulator of Enhancer-Promoter Loops , 2017, Cell.

[7]  T. Evans,et al.  Genome Editing in hPSCs Reveals GATA6 Haploinsufficiency and a Genetic Interaction with GATA4 in Human Pancreatic Development. , 2017, Cell stem cell.

[8]  G. Hon,et al.  Multiplexed Engineering and Analysis of Combinatorial Enhancer Activity in Single Cells. , 2017, Molecular cell.

[9]  J. A. Maguire,et al.  GATA6 Plays an Important Role in the Induction of Human Definitive Endoderm, Development of the Pancreas, and Functionality of Pancreatic β Cells , 2017, Stem cell reports.

[10]  Thomas M. Norman,et al.  Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens , 2016, Cell.

[11]  Thomas M. Norman,et al.  A Multiplexed Single-Cell CRISPR Screening Platform Enables Systematic Dissection of the Unfolded Protein Response , 2016, Cell.

[12]  André F. Rendeiro,et al.  Pooled CRISPR screening with single-cell transcriptome read-out , 2017, Nature Methods.

[13]  Max A. Horlbeck,et al.  Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation , 2016, eLife.

[14]  R. Stewart,et al.  Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm , 2016, Genome Biology.

[15]  Maxim N. Artyomov,et al.  End Sequence Analysis Toolkit (ESAT) expands the extractable information from single-cell RNA-seq data , 2016, Genome research.

[16]  Andrew D. Rouillard,et al.  Enrichr: a comprehensive gene set enrichment analysis web server 2016 update , 2016, Nucleic Acids Res..

[17]  Nevan J Krogan,et al.  CRISPR Interference Efficiently Induces Specific and Reversible Gene Silencing in Human iPSCs. , 2016, Cell stem cell.

[18]  K. Kaestner,et al.  The Pioneer Transcription Factor FoxA Maintains an Accessible Nucleosome Configuration at Enhancers for Tissue-Specific Gene Activation. , 2016, Molecular cell.

[19]  P. Linsley,et al.  MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data , 2015, Genome Biology.

[20]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[21]  S. Crotty,et al.  In vivo RNAi screens: concepts and applications. , 2015, Trends in immunology.

[22]  Bing Ren,et al.  Epigenetic priming of enhancers predicts developmental competence of hESC-derived endodermal lineage intermediates. , 2015, Cell stem cell.

[23]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[24]  A. Regev,et al.  Spatial reconstruction of single-cell gene expression , 2015, Nature Biotechnology.

[25]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[26]  Michael J. Ziller,et al.  Dissecting neural differentiation regulatory networks through epigenetic footprinting , 2014, Nature.

[27]  Ronald D. Vale,et al.  A Protein-Tagging System for Signal Amplification in Gene Expression and Fluorescence Imaging , 2014, Cell.

[28]  Max A. Horlbeck,et al.  Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation , 2014, Cell.

[29]  Bjoern Peters,et al.  In vivo RNA interference screens identify regulators of antiviral CD4(+) and CD8(+) T cell differentiation. , 2014, Immunity.

[30]  I. Weissman,et al.  Efficient endoderm induction from human pluripotent stem cells by logically directing signals controlling lineage bifurcations. , 2014, Cell stem cell.

[31]  R. Maehr,et al.  Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells , 2014, Development.

[32]  Howard Y. Chang,et al.  Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position , 2013, Nature Methods.

[33]  Ludo Waltman,et al.  A smart local moving algorithm for large-scale modularity-based community detection , 2013, The European Physical Journal B.

[34]  Michael J. Ziller,et al.  Transcriptional and Epigenetic Dynamics during Specification of Human Embryonic Stem Cells , 2013, Cell.

[35]  R. Derynck,et al.  Smad2 Is Essential for Maintenance of the Human and Mouse Primed Pluripotent Stem Cell State* , 2013, The Journal of Biological Chemistry.

[36]  Edward Y. Chen,et al.  Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool , 2013, BMC Bioinformatics.

[37]  Danwei Huangfu,et al.  Human pluripotent stem cells: an emerging model in developmental biology , 2013, Development.

[38]  Ludovic Vallier,et al.  Production of hepatocyte-like cells from human pluripotent stem cells , 2013, Nature Protocols.

[39]  Z. Weng,et al.  Strand-specific libraries for high throughput RNA sequencing (RNA-Seq) prepared without poly(A) selection , 2012, Silence.

[40]  Zhaoyu Li,et al.  Foxa2 and H2A.Z Mediate Nucleosome Depletion during Embryonic Stem Cell Differentiation , 2012, Cell.

[41]  J. Massagué TGFβ signalling in context , 2012, Nature Reviews Molecular Cell Biology.

[42]  S. K. Balakrishnan,et al.  Functional and Molecular Characterization of the Role of CTCF in Human Embryonic Stem Cell Biology , 2012, PloS one.

[43]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration , 2012, Briefings Bioinform..

[44]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[45]  William Stafford Noble,et al.  FIMO: scanning for occurrences of a given motif , 2011, Bioinform..

[46]  Cory Y. McLean,et al.  GREAT improves functional interpretation of cis-regulatory regions , 2010, Nature Biotechnology.

[47]  P. Andrews,et al.  The Role of SMAD4 in Human Embryonic Stem Cell Self‐Renewal and Stem Cell Fate , 2010, Stem cells.

[48]  P. Hoodless,et al.  Foxh1 and Foxa2 are not required for formation of the midgut and hindgut definitive endoderm. , 2010, Developmental biology.

[49]  S. Keleş,et al.  Sparse partial least squares regression for simultaneous dimension reduction and variable selection , 2010, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[50]  Aaron M Zorn,et al.  Vertebrate endoderm development and organ formation. , 2009, Annual review of cell and developmental biology.

[51]  M. Shen Nodal signaling: developmental roles and regulation , 2007, Development.

[52]  R. Tibshirani,et al.  Sparse Principal Component Analysis , 2006 .

[53]  E. Kroon,et al.  Efficient differentiation of human embryonic stem cells to definitive endoderm , 2005, Nature Biotechnology.

[54]  Klaus H. Kaestner,et al.  The initiation of liver development is dependent on Foxa transcription factors , 2005, Nature.

[55]  Jeffrey A Whitsett,et al.  Compensatory Roles of Foxa1 and Foxa2 during Lung Morphogenesis* , 2005, Journal of Biological Chemistry.

[56]  K. Kaestner,et al.  Foxa2 is required for the differentiation of pancreatic α-cells , 2005 .

[57]  Dorian C. Anderson,et al.  Differential requirements for Smad4 in TGFβ-dependent patterning of the early mouse embryo , 2004, Development.

[58]  D. Norris,et al.  Cell fate decisions within the mouse organizer are governed by graded Nodal signals. , 2003, Genes & development.

[59]  Yoshiakira Kanai,et al.  Depletion of definitive gut endoderm in Sox17-null mutant mice. , 2002, Development.

[60]  J. Smith,et al.  Distinct enhancer elements control Hex expression during gastrulation and early organogenesis. , 2001, Developmental biology.

[61]  J. Rossant,et al.  FoxH1 (Fast) functions to specify the anterior primitive streak in the mouse. , 2001, Genes & development.

[62]  Y. Saijoh,et al.  The transcription factor FoxH1 (FAST) mediates Nodal signaling during anterior-posterior patterning and node formation in the mouse. , 2001, Genes & development.

[63]  P. Hoodless,et al.  Formation of the definitive endoderm in mouse is a Smad2-dependent process. , 2000, Development.

[64]  R. Kucherlapati,et al.  Postgastrulation Smad2-deficient embryos show defects in embryo turning and anterior morphogenesis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[65]  D. Stainier,et al.  A molecular pathway leading to endoderm formation in zebrafish , 1999, Current Biology.

[66]  J. Rossant,et al.  The transcription factor HNF3beta is required in visceral endoderm for normal primitive streak morphogenesis. , 1998, Development.

[67]  Thomas M. Jessell,et al.  The winged-helix transcription factor HNF-3β is required for notochord development in the mouse embryo , 1994, Cell.

[68]  J. Rossant,et al.  HNF-3β is essential for node and notochord formation in mouse development , 1994, Cell.

[69]  F. Conlon,et al.  A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. , 1994, Development.

[70]  Qiang Wang,et al.  Molecular regulation of Nodal signaling during mesendoderm formation , 2018, Acta biochimica et biophysica Sinica.

[71]  J. Wells,et al.  Generation of Gastrointestinal Organoids from Human Pluripotent Stem Cells. , 2017, Methods in molecular biology.

[72]  Mark D. Robinson,et al.  Differential analyses for RNA-seq : transcript-level estimates improve gene-level inferences Supplementary Material , 2015 .

[73]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[74]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[75]  J. Rossant,et al.  HNF-3 beta is essential for node and notochord formation in mouse development. , 1994, Cell.